Theoretical Chemistry Accounts

, Volume 128, Issue 3, pp 295–305 | Cite as

Minimally augmented Karlsruhe basis sets

  • Jingjing Zheng
  • Xuefei Xu
  • Donald G. Truhlar
Regular Article


We propose an extension of the basis sets proposed by Ahlrichs and coworkers at Karlsruhe (these basis sets are designated as the second-generation default or “def2” basis sets in the Turbomole program). The Karlsruhe basis sets are very appealing because they constitute balanced and economical basis sets of graded quality from partially polarized double zeta to heavily polarized quadruple zeta for all elements up to radon (Z = 86). The extension consists of adding a minimal set of diffuse functions to a subset of the elements. This yields basis sets labeled minimally augmented or with “ma” as a prefix. We find that diffuse functions are not quite as important for the def2 basis sets as they are for Pople basis sets, but they are still necessary for good results on barrier heights and electron affinities. We provide assessments and validations of this extension for a variety of data sets and representative cases. We recommend the new ma-TZVP basis set for general-purpose applications of density functional theory.


Electronic structure Basis sets Density functional theory Bond dissociation energies Barrier heights Electron affinities Ionization potentials Noncovalent interactions Diffuse functions Minimally augmented basis set Double zeta Triple zeta Quadruple zeta ma-TZVP DBH24/08 database S22A database 



This work was supported in part by the U. S. Department of Energy, Office of Basic Energy Sciences, under grant no. DE-FG02-86ER13579 and by the Air Force Office of Scientific Research under grant no. FA9550-08-1-0183.

Supplementary material

214_2010_846_MOESM1_ESM.pdf (97 kb)
(PDF 96 kb)


  1. 1.
    Hehre WJ, Radom L, Schleyer P, Pople JA (1986) Ab Initio Molecular Orbital Theory. New York, John Wiley & SonsGoogle Scholar
  2. 2.
    Dunning T H Jr (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  3. 3.
    Wilson AK, Woon DE, Peterson KA, Dunning T H Jr (1999) J Chem Phys 110:7667CrossRefGoogle Scholar
  4. 4.
    Weigend F, Furche F, Ahlrichs R (2003) J Chem Phys 19:12753CrossRefGoogle Scholar
  5. 5.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7:3297CrossRefGoogle Scholar
  6. 6.
    Ahlrichs R et al (2010) Turbomole—program package for ab initio electronic structure calculations. Accessed 21 April, 2010
  7. 7.
    Ahlrichs R et al (2010) Turbomole user’s manual, Version 6.0, Feburary 3, 2009. Accessed 30, April, 2010
  8. 8.
    Papajak E, Leverentz H, Zheng J, Truhlar DG (2009) J Chem Theory Comput 5:1197CrossRefGoogle Scholar
  9. 9.
    Papajak E, Truhlar DG (2010) J Chem Theory Comput 6:597CrossRefGoogle Scholar
  10. 10.
    Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384CrossRefGoogle Scholar
  11. 11.
    Zheng J, Zhao Y, Truhlar DG (2007) J Chem Theory Comput 3:569CrossRefGoogle Scholar
  12. 12.
    Zheng J, Zhao Y, Truhlar DG (2009) J Chem Theory Comput 5:808CrossRefGoogle Scholar
  13. 13.
    Lynch BJ, Truhlar DG (2003) J Phys Chem A 107:3898CrossRefGoogle Scholar
  14. 14.
    Jurecka P, Sponer J, Cerny J, Hobza P (2006) Phys Chem Chem Phys 8:1985CrossRefGoogle Scholar
  15. 15.
    Marchetti O, Werner H-J (2009) J Phys Chem A 113:11580CrossRefGoogle Scholar
  16. 16.
    Takatani T, Hohenstein EG, Malagoli M, Marshall MS, Sherrill CD (2010) J Chem Phys 132:144104CrossRefGoogle Scholar
  17. 17.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  18. 18.
    Zhao Y, Truhlar DG (2008) Theor Chem Acc 120:215CrossRefGoogle Scholar
  19. 19.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101CrossRefGoogle Scholar
  20. 20.
    Chai J-D, Head-Gordon M (2008) J Chem Phys 128:084106CrossRefGoogle Scholar
  21. 21.
    Chai J-D, Head-Gordon M (2008) Phys Chem Chem Phys 10:6615CrossRefGoogle Scholar
  22. 22.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  23. 23.
    Hobza P (2010) Accessed 30 April, 2010
  24. 24.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650CrossRefGoogle Scholar
  25. 25.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639CrossRefGoogle Scholar
  26. 26.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PV (1983) J Comput Chem 4:294CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265CrossRefGoogle Scholar
  28. 28.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  29. 29.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phy 110:4703CrossRefGoogle Scholar
  30. 30.
    Fast PL, Sanchez ML, Truhlar DG (1999) Chem Phys Lett 306:407CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts RE, Stratmann O, Yazyev AJ, Austin R, Cammi C, Pomelli, JW, Ochterski R, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz, JV, Cioslowski J, Fox DJ (2009) Gaussian 09. Revision A 02, Gaussian Inc., Wallingford, CTGoogle Scholar
  32. 32.
    Werner H-J, Knowles PJ, Lindh R, Manby FR, Schutz M, Celani P, Korona T, Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Hetzer G, Hrenar T, Knizia,G, Koeppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME, Nicklass A, Palmieri P, Pfueger K, Pitzer R, Reiher M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Wang M, Wolf A (2008) MOLPRO, version 2008.1,Universität Stuttgart, Stuttgart, GermanyGoogle Scholar
  33. 33.
    Del Bene JE, Aue DH, Shavitt I (1992) J Am Chem Soc 114:1631CrossRefGoogle Scholar
  34. 34.
    Lynch BJ, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:1643CrossRefGoogle Scholar
  35. 35.
    Lynch BJ, Zhao Y, Truhlar DG (2003) J Phys Chem A 107:1384CrossRefGoogle Scholar
  36. 36.
    Alvarez-Idaboy JR, Galano A (2010) Theo Chem Acc 126:75CrossRefGoogle Scholar
  37. 37.
    Tang KT, Toennies JP (1984) J Chem Phys 80:3726CrossRefGoogle Scholar
  38. 38.
    Paesani F, Gianturco F, Lewerenz M, Toennies JP (1999) J Chem Phys 111:6897CrossRefGoogle Scholar
  39. 39.
    Scheer M, Bilodeau RC, Haugen HK (1998) Phys Rev Lett 80:2562CrossRefGoogle Scholar
  40. 40.
    Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  41. 41.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  42. 42.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  43. 43.
    Adamo C, Barone V (1999) J Chem Phys 110:6158CrossRefGoogle Scholar
  44. 44.
    Adamo C, Cossi M, Barone V (1999) Theochem 493:147Google Scholar
  45. 45.
    Ernzerhof M, Scuseria GE (1999) J Chem Phys 110:5029CrossRefGoogle Scholar
  46. 46.
    Schultz NE, Zhao Y, Truhlar DG (2005) J Phys Chem A 109:11127CrossRefGoogle Scholar
  47. 47.
    Peterson KA (2003) J Chem Phys 119:11099CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Chemistry and Supercomputing InstituteUniversity of MinnesotaMinneapolisUSA

Personalised recommendations