Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 783–793 | Cite as

Theoretical study of the role of solvent Stark effect in electron transitions

  • M. Elena Martín
  • M. Luz Sánchez
  • José C. Corchado
  • Aurora Muñoz-Losa
  • Ignacio Fdez. Galván
  • Francisco J. Olivares del Valle
  • Manuel A. Aguilar
Regular Article


The possible influence of the solvent Stark effect (SSE) on the solvatochromic shift in electron transitions has been analyzed by using the ASEP/MD (averaged solvent electrostatic potential from molecular dynamics) method. With this purpose, four molecules, two polar (acrolein and formaldehyde) and two non-polar (p-difluorobenzene and trans-difluoroethene) have been studied in solvents of diverse polarity. Independently of the nature of the system we found that the contribution of SSE on the average value of the solvent shift or on the multipole moment values is negligible. In the case of centro-symmetric molecules, our results permit to discard the SSE as cause of the solvent shift found, which must be assigned to the electrostatic interaction of the solute quadrupole and higher multipoles with the solvent. As the SSE values provide also a measure of the errors introduced by the mean field approximation (MFA), these results indicate that MFA permits a very accurate determination of the solvent shift at the same time that it reduces drastically the computational cost. Finally, a new procedure suited to the ASEP/MD method has been presented that permits to estimate the inhomogeneous broadening of spectral bands, complementing the information provided by mean field theories. This procedure does not need additional quantum calculations and its computational cost is minimal.


Solvent Stark effect ASEP/MD QM/MM Mean field theories 



This work was supported by the CTQ2008-06224 Project from the Ministerio de Ciencia e Innovación of Spain and the PRI08A056 Project from the Consejería de Economía, Comercio e Innovación of the Junta de Extremadura.


  1. 1.
    Linder B (1967) Adv Chem Phys 12:225CrossRefGoogle Scholar
  2. 2.
    Karlstrom G, Halle B (1993) J Chem Phys 99:8056CrossRefGoogle Scholar
  3. 3.
    Ghoneim N, Suppan P (1995) Spectrochim Acta 51A:1043Google Scholar
  4. 4.
    Gosh AS, Basu S (1974) J Photochem 3:247CrossRefGoogle Scholar
  5. 5.
    Tomasi J, Persico M (1994) Chem Rev 94:2027CrossRefGoogle Scholar
  6. 6.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999CrossRefGoogle Scholar
  7. 7.
    Tapia O, Goscinski O (1975) Mol Phys 29:1653CrossRefGoogle Scholar
  8. 8.
    Orozco M, Luque FJ (2000) Chem Rev 100:4187CrossRefGoogle Scholar
  9. 9.
    Rivail JL, Rinaldi D (1995) In: Leszczynski J (ed) Computational chemistry: review of current trends. World Scientific Publishing, SingaporeGoogle Scholar
  10. 10.
    Cramer CJ, Truhlar CJ (1995) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol VI. VCH Publishers, New YorkGoogle Scholar
  11. 11.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161CrossRefGoogle Scholar
  12. 12.
    Warshel A (1991) Computer modelling of chemical reactions in enzymes and solutions. Wiley-Interscience, New YorkGoogle Scholar
  13. 13.
    Warshel A, Levitt M (1976) J Mol Biol 103:227CrossRefGoogle Scholar
  14. 14.
    Field MJ, Bash PA, Karplus M (1990) J Comput Chem 11:700CrossRefGoogle Scholar
  15. 15.
    Luzhkov V, Warshel A (1992) J Comput Chem 13:199CrossRefGoogle Scholar
  16. 16.
    Gao J (1992) J Phys Chem 96:537CrossRefGoogle Scholar
  17. 17.
    Wei D, Salahub DR (1994) Chem Phys Lett 224:291CrossRefGoogle Scholar
  18. 18.
    Tuñón I, Martins-Costa MTC, Millot C, Ruiz-López MF, Rivail JL (1996) J Comput Chem 17:19CrossRefGoogle Scholar
  19. 19.
    Wesolowski TA, Warshel A (1993) J Phys Chem 97:8050CrossRefGoogle Scholar
  20. 20.
    Stanton RV, Little LR, Merz KM (1995) J Phys Chem 99:17344CrossRefGoogle Scholar
  21. 21.
    Gao J, Truhlar DG (2002) Annu Rev Phys Chem 53:467Google Scholar
  22. 22.
    Ten-no S, Hirata F, Kato S (1994) J Chem Phys 100:7443CrossRefGoogle Scholar
  23. 23.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Oxford University Press, LondonGoogle Scholar
  24. 24.
    McCammon JA, Harvey JC (1987) Dynamics of proteins and nucleic acids. Cambridge University Press, CambridgeGoogle Scholar
  25. 25.
    Fdez. Galván I, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) Comput Phys Commun 155:244CrossRefGoogle Scholar
  26. 26.
    Fdez. Galván I, Olivares del Valle FJ, Martín ME, Aguilar MA (2004) Theor Chem Acc 111:196CrossRefGoogle Scholar
  27. 27.
    Fdez. Galván I, Aguilar MA, Ruiz-López MF (2005) J Phys Chem B 109:23024CrossRefGoogle Scholar
  28. 28.
    Muñoz-Losa A, Martín ME, Fdez. Galván I, Aguilar MA (2007) Chem Phys Lett 443:76CrossRefGoogle Scholar
  29. 29.
    Muñoz-Losa A, Fdez. Galván I, Sánchez ML, Martín ME, Aguilar MA (2008) J Phys Chem B 112:877CrossRefGoogle Scholar
  30. 30.
    Muñoz-Losa A, Fdez. Galván I, Martín ME, Aguilar MA (2006) J Phys Chem B 110:18064CrossRefGoogle Scholar
  31. 31.
    Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2000) J Chem Phys 113:6308CrossRefGoogle Scholar
  32. 32.
    Muñoz-Losa A, Fdez. Galván I, Aguilar MA, Martín ME (2008) J Phys Chem B 112:8815CrossRefGoogle Scholar
  33. 33.
    Martín ME, Muñoz-Losa A, Fdez. Galván I, Aguilar MA (2004) J Chem Phys 121:3710CrossRefGoogle Scholar
  34. 34.
    Sánchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313CrossRefGoogle Scholar
  35. 35.
    Sánchez ML, Martín ME, Aguilar MA, Olivares del Valle FJ (2000) J Comput Chem 21:705CrossRefGoogle Scholar
  36. 36.
    Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116:1613CrossRefGoogle Scholar
  37. 37.
    Sánchez ML, Martín ME, Fdez. Galván I, Olivares del Valle FJ, Aguilar MA (2002) J Phys Chem B 106:4813CrossRefGoogle Scholar
  38. 38.
    Yamamoto T (2008) J Chem Phys 129:244104CrossRefGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc, PittsburghGoogle Scholar
  40. 40.
    Refson K (2000) Comput Phys Commun 126:310CrossRefGoogle Scholar
  41. 41.
    Møller C, Plesset MS (1934) Phys Rev 46:618CrossRefGoogle Scholar
  42. 42.
    Roos BO (1987) In: Lawley KP (ed) Ab initio methods in quantum chemistry. Wiley, New YorkGoogle Scholar
  43. 43.
    Roos BO, Fülscher MP, Malmqvist PÅ, Merchán M, Serrano-Andrés L (1994) In: Langhorff SR (ed) Quantum mechanical electronic structure calculations with chemical accuracy. Kluwer, DordrechtGoogle Scholar
  44. 44.
    Andersson K, Malmquist PÅ, Roos BO (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  45. 45.
    Malmquist PÅ, Roos BO (1989) Chem Phys Lett 155:189CrossRefGoogle Scholar
  46. 46.
    Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Cossi M, Fleig T, Fülscher MP, Gagliardi L, de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist PÅ, Neogrády P, Olsen J, Roos BO, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stalring J, Thorsteinsson T, Veryazov V, Wierzbowska M, Widmark PO (2003) MOLCAS, version 6.2. University of Lund, LundGoogle Scholar
  47. 47.
    Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225CrossRefGoogle Scholar
  48. 48.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926CrossRefGoogle Scholar
  49. 49.
    Hoover WG (1985) Phys Rev A 31:1695CrossRefGoogle Scholar
  50. 50.
    Brand JCD, Williamson DG (1963) Discuss Faraday Soc 35:184CrossRefGoogle Scholar
  51. 51.
    Becker RS, Inuzuka K, King J (1970) J Chem Phys 52:5164CrossRefGoogle Scholar
  52. 52.
    Walzl KN, Koerting CF, Kuppermann A (1987) J Chem Phys 87:3796CrossRefGoogle Scholar
  53. 53.
    Robin MB (1985) In: Higher excited states of polyatomic molecules, vol 3. Academic Press, New YorkGoogle Scholar
  54. 54.
    Sponer H (1954) J Chem Phys 22:234CrossRefGoogle Scholar
  55. 55.
    Belanger G, Sandorfy C (1971) J Chem Phys 55:2055CrossRefGoogle Scholar
  56. 56.
    González-Vázquez J, González L (2008) Chem Phys 349:287CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. Elena Martín
    • 1
  • M. Luz Sánchez
    • 1
  • José C. Corchado
    • 1
  • Aurora Muñoz-Losa
    • 1
  • Ignacio Fdez. Galván
    • 1
  • Francisco J. Olivares del Valle
    • 1
  • Manuel A. Aguilar
    • 1
  1. 1.Química Física, Edif. José María Viguera LoboUniversidad de ExtremaduraBadajozSpain

Personalised recommendations