Advertisement

Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 579–592 | Cite as

The reaction between HO and (H2O) n (n = 1, 3) clusters: reaction mechanisms and tunneling effects

  • Javier Gonzalez
  • Marc Caballero
  • Antoni Aguilar-Mogas
  • Miquel Torrent-Sucarrat
  • Ramon Crehuet
  • Albert Solé
  • Xavier Giménez
  • Santiago Olivella
  • Josep M. BofillEmail author
  • Josep M. AngladaEmail author
Regular Article

Abstract

The reaction between the HO radical and (H2O)n (n = 1, 3) clusters has been investigated employing high-level quantum mechanical calculations using DFT-BH&HLYP, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311 + G(2df,2p), aug-cc-pVTZ, and aug-cc-pVQZ basis sets. The rate constants have also been calculated and the tunneling effects have been studied by means of time–dependent wavepacket calculations, performed using the Quantum–Reaction Path Hamiltonian method. According to the findings of previously reported theoretical works, the reaction between HO and H2O begins with the formation of a pre-reactive complex that is formed before the transition state, the formation of a post-reactive complex, and the release of the products. The reaction between HO and (H2O)2 also begins with the formation of a pre-reactive complex, which dissociates into H2O…HO + H2O. The reaction between HO and (H2O)3 is much more complex. The hydroxyl radical adds to the water trimer, and then it occurs a geometrical rearrangement in the pre-reactive hydrogen-bonded complex region, before the transition state. The reaction between hydroxyl radical and water trimer is computed to be much faster than the reaction between hydroxyl radical and a single water molecule, and, in both cases, the tunneling effects are very important mainly at low temperatures. A prediction of the atmospheric concentration of the hydrogen-bonded complexes studied in this work is also reported.

Keywords

Atmospheric chemistry Hydroxyl radical Water clusters Reaction mechanism Tunneling effects 

Notes

Acknowledgments

This research has been supported by the Generalitat de Catalunya (Grant 2009SGR01472) and the Spanish Dirección General de Investigación Científica y Técnica (DGYCIT, grants CTQ2008-06536/BQU and CTQ2008-02856/BQU). The calculations described in this work were carried out at the Centre de Supercomputació de Catalunya (CESCA), at the Computational Center of CTI–CSIC, and at the cluster of workstations of our group. Antoni Aguilar-Mogas and Marc Caballero gratefully thank to Ministerio de Ciencia e Innovación for a predoctoral fellowship. Javier González and Miquel Torrent-Sucarrat acknowledge CSIC for a JAE-DOC contract.

References

  1. 1.
    Wayne RP (2000) Chemistry of atmospheres, 3rd edn. Oxford University Press, OxfordGoogle Scholar
  2. 2.
    Wennberg PO, Hanisco TF, Jaeglé L, Jacob DJ, Hintsa EJ, Lanzendorf EJ, Anderson JG, Gao RS, Keim ER, Donnelly SG, Negro LAD, Fahey DW, McKeen SA, Salawitch RJ, Webster CR, May RD, Herman RL, Proffitt MH, Margitan JJ, Atlas EL, Schauffler SM, Flocke F, McElroy CT, Bui TP (1998) Science 279:49–53CrossRefGoogle Scholar
  3. 3.
    Monks PS (2005) Gas-phase radical chemistry in the troposphere. Chem Soc Rev 34:376–395CrossRefGoogle Scholar
  4. 4.
    Jaeglé L, Jacob DJ, Brune WH, Wennberg PO (2001) Atmos Environ 35:469–489CrossRefGoogle Scholar
  5. 5.
    Hofzumahaus A, Rohrer F, Lu KD, Bohn B, Brauers T, Chang CC, Fuchs H, Holland F, Kita K, Kondo Y, Li X, Lou SR, Shao M, Zeng LM, Wahner A, Zhang YH (2009) Science 324(5935):1702–1704. doi: 10.1126/science.1164566 Google Scholar
  6. 6.
    Mansergas A, Anglada JM (2007) ChemPhysChem 8:1534–1539CrossRefGoogle Scholar
  7. 7.
    Jacob DJ (2000) Atmos Environ 34(12–14):2131–2159CrossRefGoogle Scholar
  8. 8.
    Chameides WL, Davis DD (1982) J Geophys Res Oceans Atmospheres 87(NC7):4863–4877CrossRefGoogle Scholar
  9. 9.
    Hanson DR, Burkholder JB, Howard CJ, Ravishankara AR (1992) J Phys Chem 96(12):4979–4985CrossRefGoogle Scholar
  10. 10.
    Kregel KC, Zhang HJ (2007) Am J Physiol Regul Integr Comp Physiol 292(1):R18–R36CrossRefGoogle Scholar
  11. 11.
    Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJ (2006) Am J Physiol Regul Integr Comp Physiol 291(3):R491–R511CrossRefGoogle Scholar
  12. 12.
    Fridovich I (1998) J Exp Biol 201(Pt 8):1203–1209Google Scholar
  13. 13.
    Kehrer JP (2000) Toxicology 149(1):43–50CrossRefGoogle Scholar
  14. 14.
    Cooper WJ, Cramer CJ, Martin NH, Mezyk SP, O’Shea KE, von Sonntag C (2009) Chem Rev 109(3):1302–1345. doi: 10.1021/cr078024c CrossRefGoogle Scholar
  15. 15.
    Sein MM, Golloch A, Schmidt TC, von Sonntag C (2007) ChemPhysChem 8(14):2065–2067CrossRefGoogle Scholar
  16. 16.
    Lesko TM, Colussi AJ, Hoffmann MR (2004) J Am Chem Soc 126:4432–4436CrossRefGoogle Scholar
  17. 17.
    Sehested K, Corfitzen H, Holcman J, Hart EJ (1998) J Phys Chem A 102:2667–2672CrossRefGoogle Scholar
  18. 18.
    Dubey MK, Mohrschladt R, Donahue NM, Anderson JG (1997) J Phys Chem A 101(8):1494–1500CrossRefGoogle Scholar
  19. 19.
    Masgrau L, Gonzalez-Lafont A, Lluch JM (1999) J Phys Chem A 103(8):1044–1053CrossRefGoogle Scholar
  20. 20.
    Masgrau L, Gonzalez-Lafont A, Lluch JM (1999) J Comput Chem 20(16):1685–1692CrossRefGoogle Scholar
  21. 21.
    Uchimaru T, Chandra AK, Tsuzuki S, Sugie M, Sekiya A (2003) J Comput Chem 24:1538–1548CrossRefGoogle Scholar
  22. 22.
    Hand MR, Rodriquez CF, Williams IH, Balint-Kurti GG (1998) J Phys Chem A 102(29):5958–5966CrossRefGoogle Scholar
  23. 23.
    Basch H, Hoz S (1997) J Phys Chem A 101(24):4416–4431CrossRefGoogle Scholar
  24. 24.
    Deyerl HJ, Luong AK, Clements TG, Continetti RE (2000) Faraday Discuss 115:147–160CrossRefGoogle Scholar
  25. 25.
    Olivella S, Anglada JM, Sole A, Bofill JM (2004) Chem Eur J 10:3404–3410. doi: 10.1002/chem.200305714 CrossRefGoogle Scholar
  26. 26.
    Vohringer-Martinez E, Hansmann B, Hernandez H, Francisco JS, Troe J, Abel B (2007) Science 315(5811):497–501CrossRefGoogle Scholar
  27. 27.
    Anglada JM, Gonzalez J (2009) ChemPhysChem 10(17):3034–3045. doi: 10.1002/cphc.200900387
  28. 28.
    Luo Y, Maeda S, Ohno K (2009) Chem Phys Lett 469:57–61CrossRefGoogle Scholar
  29. 29.
    Aloisio S, Francisco JS, Friedl RR (2000) J Phys Chem A 104:6597–6601CrossRefGoogle Scholar
  30. 30.
    Zhu RS, Lin MC (2002) Chem Phys Lett 354(3–4):217–226CrossRefGoogle Scholar
  31. 31.
    Anglada JM, Aplincourt P, Bofill JM, Cremer D (2002) ChemPhysChem 2:215–221CrossRefGoogle Scholar
  32. 32.
    Crehuet R, Anglada JM, Bofill JM (2001) Chem Eur J 7(10):2227–2235CrossRefGoogle Scholar
  33. 33.
    Neeb P, Sauer F, Horie O, Moortgat GK (1997) Atmos Environ 31(10):1417–1423CrossRefGoogle Scholar
  34. 34.
    Gonzalez J, Torrent-Sucarrat M, Anglada JM (2010) PhysChemChemPhys 12(9):2116–2125. doi: 10.1039/b916659a
  35. 35.
    Bahnson BJ, Colby TD, Chin JK, Goldstein BM, Klinman JP (1997) Proc Natl Acad Sci USA 94(24):12797–12802CrossRefGoogle Scholar
  36. 36.
    Giese K, Petkovic M, Naundorf H, Kuhn O (2006) Phys Rep Rev Sect Phys Lett 430(4):211–276. doi: 10.1016/j.physrep.2006.04.005 Google Scholar
  37. 37.
    Guallar V, Gherman BF, Miller WH, Lippard SJ, Friesner RA (2002) J Am Chem Soc 124(13):3377–3384. doi: 10.1021/ja0167248 Google Scholar
  38. 38.
    Makri N (1999) Annual Rev Phys Chem 50:167–191CrossRefGoogle Scholar
  39. 39.
    Pfeilsticker K, Lotter A, Peters C, Bosch H (2003) Science 300(5628):2078–2080CrossRefGoogle Scholar
  40. 40.
    Dunn ME, Pokon EK, Shields GC (2004) J Am Chem Soc 126:2647–2653CrossRefGoogle Scholar
  41. 41.
    Goldman N, Fellers RS, Leforestier C, Saykally RJ (2001) J Phys Chem A 105(3):515–519CrossRefGoogle Scholar
  42. 42.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  43. 43.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  44. 44.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1986) Ab initio molecular orbital theory. Wiley, New York, pp 86–87Google Scholar
  45. 45.
    Ishida K, Morokuma K, Kormornicki A (1977) J Chem Phys 66:2153CrossRefGoogle Scholar
  46. 46.
    Gonzalez C, Schlegel HB (1989) J Chem Phys 90:2154CrossRefGoogle Scholar
  47. 47.
    Gonzalez C, Schlegel HB (1990) J Phys Chem 94:5523CrossRefGoogle Scholar
  48. 48.
    Fukui K (1970) J Phys Chem 74(23):4161CrossRefGoogle Scholar
  49. 49.
    Cizek J (1969) Adv Chem Phys 14:35CrossRefGoogle Scholar
  50. 50.
    Barlett RJ (1989) J Phys Chem 93:1963CrossRefGoogle Scholar
  51. 51.
    Pople JA, Krishnan R, Schlegel HB, Binkley JS (1978) Int J Quant Chem XIV:545–560CrossRefGoogle Scholar
  52. 52.
    Pople JA, Head-Gordon M, Raghavachari K (1989) J Chem Phys 90(8):4635–4636CrossRefGoogle Scholar
  53. 53.
    Dunning THJ (1989) J Chem Phys 90:1007CrossRefGoogle Scholar
  54. 54.
    Kendall RA, Dunning TH, Harrison RJ (1992) J Chem Phys 96(9):6796–6806CrossRefGoogle Scholar
  55. 55.
    Pople JA, Head-Gordon M, Raghavachari K (1987) J Chem Phys 87:5968CrossRefGoogle Scholar
  56. 56.
    Roos BO (1987) Adv Chem Phys 69:399CrossRefGoogle Scholar
  57. 57.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JA Jr, Montgomery J, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ocherski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, revision C.01 edn. Gaussian, Inc., Wallingford, CTGoogle Scholar
  58. 58.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) Gamess 2004. J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  59. 59.
    Gonzalez J, Gimenez X, Bofill JM (2009) J Chem Phys 131(5):054108. doi: 10.1063/1.3194135 Google Scholar
  60. 60.
    Gonzalez J, Gimenez X, Bofill JM (2001) J Phys Chem A 105(20):5022–5029. doi: 10.1021/jp003793k Google Scholar
  61. 61.
    Gonzalez J, Gimenez X, Bofill JM (2007) J Comput Chem 28 (13):2111–2121. doi: 10.1002/jcc.20729 Google Scholar
  62. 62.
    Gonzalez J, Gimenez X, Bofill JM (2007) J Comput Chem 28(13):2102–2110. doi: 10.1002/jcc.20728 Google Scholar
  63. 63.
    Gonzalez J, Gimenez X, Bofill JM (2004) Theor Chem Acc 112(2):75–83. doi: 10.1007/s00214-004-0571-6 Google Scholar
  64. 64.
    Askar A, Cakmak AS (1978) J Chem Phys 68(6):2794–2798Google Scholar
  65. 65.
    Klopper W, de Rijdt J, van Duijneveldt FB (2000) PhysChemChemPhys 2(10):2227–2234Google Scholar
  66. 66.
    Zhou Z, Qu Y, Fu A, Du B, He F, Gao H (2002) Int J Quant Chem 89:550–558CrossRefGoogle Scholar
  67. 67.
    Cooper PD, Kjaergaard HG, Langford VS, McKinley AJ, Quickenden TI, Schofield DP (2003) J Am Chem Soc 125(20):6048–6049CrossRefGoogle Scholar
  68. 68.
    Engdahl A, Karlstrom G, Nelander B (2003) J Chem Phys 118(17):7797–7802CrossRefGoogle Scholar
  69. 69.
    Ohshima Y, Sato K, Sumiyoshi Y, Endo Y (2005) J Am Chem Soc 127(4):1108–1109CrossRefGoogle Scholar
  70. 70.
    Allodi MA, Dunn ME, Livada J, Kirschner KN, Shields GC (2006) J Phys Chem A 110(49):13283–13289CrossRefGoogle Scholar
  71. 71.
    Soloveichik P, O’Donnell BA, Lester MI, Francisco JS, McCoy AB (2010) J Phys Chem A 114(3):1529–1538. doi: 10.1021/jp907885d Google Scholar
  72. 72.
    Quapp W, Hirsch M, Heidrich D (1998) Theor Chem Acc 100(5–6):285–299Google Scholar
  73. 73.
    Ess DH, Wheeler SE, Iafe RG, Xu L, Celebi-Olcum N, Houk KN (2008) Angew Chem Int Ed Engl 47(40):7592–7601. doi: 10.1002/anie.200800918 Google Scholar
  74. 74.
    Valtazanos P, Ruedenberg K (1986) Theor Chim Acta 69(4):281–307CrossRefGoogle Scholar
  75. 75.
    Tsuji K, Shibuya K (2009) J Phys Chem A 113(37):9945–9951. doi: 10.1021/jp903648z Google Scholar
  76. 76.
    Anglada JM (2004) J Am Chem Soc 126(31):9809–9820CrossRefGoogle Scholar
  77. 77.
    Miller WH (1976) J Chem Phys 65:2216–2223CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Javier Gonzalez
    • 1
  • Marc Caballero
    • 2
    • 4
  • Antoni Aguilar-Mogas
    • 2
    • 4
  • Miquel Torrent-Sucarrat
    • 1
  • Ramon Crehuet
    • 1
  • Albert Solé
    • 2
    • 4
  • Xavier Giménez
    • 2
    • 4
  • Santiago Olivella
    • 1
  • Josep M. Bofill
    • 3
    • 4
    Email author
  • Josep M. Anglada
    • 1
    Email author
  1. 1.Departament de Química Biològica i Modelització MolecularInstitut de Química Avançada de Catalunya, IQAC–CSICBarcelonaSpain
  2. 2.Departament de Química FísicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament de Química OrgànicaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institut de Química Teòrica i ComputacionalUniversitat de Barcelona (IQTCUB)BarcelonaSpain

Personalised recommendations