Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 663–673 | Cite as

A density functional theory study of the ‘mythic’ Lindlar hydrogenation catalyst

  • M. García-Mota
  • J. Gómez-Díaz
  • G. Novell-Leruth
  • C. Vargas-Fuentes
  • L. Bellarosa
  • B. Bridier
  • J. Pérez-Ramírez
  • N. López
Regular Article

Abstract

A Lindlar catalyst is a popular heterogeneous catalyst that consists of 5 wt.% palladium supported on porous calcium carbonate and treated with various forms of lead and quinoline. The additives strategically deactivate palladium sites. The catalyst is widely used for the partial hydrogenation of acetylenic compounds in organic syntheses. Alkyne reduction is stereoselective, occurring via syn addition to give the cis-alkene. Even if it has been employed for about 60 years, there is a lack of molecular level understanding of the Lindlar catalyst. We have applied density functional theory simulations to understand the structure and the nature of the interplay between the multiple chemical modifiers in the Lindlar catalyst. Indeed, the poisons influence different parameters controlling selectivity to the alkene: Pb modifies the thermodynamic factor and hinders the formation of hydrides, while quinoline isolates Pd sites thus minimizing oligomerization.

Keywords

Hydrogenation Acetylenic compounds Lindlar catalyst Selectivity DFT 

Notes

Acknowledgments

We thank MICINN for Grants CTQ2009-07753/BQU and CSD2006-0003 and BSC-RES for providing generous computational resources.

References

  1. 1.
    Somorjai GA, Borodko YG (2001) Catal Lett 76:1CrossRefGoogle Scholar
  2. 2.
    Corma A, Serna P (2006) Science 313:33CrossRefGoogle Scholar
  3. 3.
    Molnar A, Sarkany A, Varga M (2001) J Mol Catal A 173:185CrossRefGoogle Scholar
  4. 4.
    Chorkendorff I, Niemantsverdriet HW (2003) Concepts of modern catalysis and kinetics. Wiley-VCH Verlag GMBH KGaA, WeinheimCrossRefGoogle Scholar
  5. 5.
    García-Mota M, Cabello N, Maseras F, Echavarren AM, Pérez-Ramírez J, López N (2008) Chem Phys Chem 9:1624CrossRefGoogle Scholar
  6. 6.
    Plata JJ, García-Mota M, Braga AAC, Maseras F, López N (2009) J Phys Chem A 113:11758CrossRefGoogle Scholar
  7. 7.
    Mei DH, Sheth PA, Neurock M, Smith CM (2006) J Catal 242:1CrossRefGoogle Scholar
  8. 8.
    Mei DH, Neurock M, Smith CM (2009) J Catal 268:181CrossRefGoogle Scholar
  9. 9.
    García-Mota M, Bridier B, Pérez-Ramírez J, López N (2010) J Catal 273:92CrossRefGoogle Scholar
  10. 10.
    Studt F, Abild-Pedersen F, Bligaard T, Sorensen RZ, Christensen CH, Nørskov JK (2008) Science 320:1320CrossRefGoogle Scholar
  11. 11.
    Lindlar H (1952) Helv Chim Acta 35:446CrossRefGoogle Scholar
  12. 12.
    Lindlar H, Dubuis R (1973) Org Synth 5:880Google Scholar
  13. 13.
    Mallat T, Baiker A (1991) Appl Catal 79:59CrossRefGoogle Scholar
  14. 14.
    Stachurski J, Thomas JM (1988) Catal Lett 1:67CrossRefGoogle Scholar
  15. 15.
    Massalski TB, Okamoto H, Subramanian PR, Kacprzak L (1990) Binary alloy phase diagrams. ASM International, Materials ParkGoogle Scholar
  16. 16.
    Chadwick D, Karolewski MA (1983) Surf Sci 126:41CrossRefGoogle Scholar
  17. 17.
    Liu G, Davis KA, Meier DC, Bagus PS, Goodman DW (2003) Phys Rev B 68:035406CrossRefGoogle Scholar
  18. 18.
    Palczewska W, Szymerska I, Ratajczykowa I, Lipski M (1980) In: Proc ECOSS-3 and ICCS-4 CannesGoogle Scholar
  19. 19.
    Szabo S (1991) Int Rev Phys Chem 10:207CrossRefGoogle Scholar
  20. 20.
    Mallat T, Baiker A (1995) Top Catal 8:115CrossRefGoogle Scholar
  21. 21.
    McEwen AB, Guttieri MJ, Maier WF, Laine RE, Shvo Y (1983) J Org Chem 48:4436CrossRefGoogle Scholar
  22. 22.
    Mallat T, Baiker A (2000) App Catal A 200:3CrossRefGoogle Scholar
  23. 23.
    Maier WF, Chettle SB, Rai RS, Thomas G (1986) J Am Chem Soc 108:2608CrossRefGoogle Scholar
  24. 24.
    Yu J, Spencer JB (1998) Chem Commun 1103Google Scholar
  25. 25.
    Segura Y, López N, Pérez-Ramírez J (2007) J Catal 247:383CrossRefGoogle Scholar
  26. 26.
    Bridier B, López N, Pérez-Ramírez J (2010) J Catal 269:80CrossRefGoogle Scholar
  27. 27.
    Bridier B, Pérez-Ramírez J (2010) J Am Chem Soc 132:4321CrossRefGoogle Scholar
  28. 28.
    Oroshnik W (1977) Synthesis of Vitamin A, intermediates and conversion thereof to Vitamin A “4058569”Google Scholar
  29. 29.
    Coq B, Figueras F (2001) J Mol Catal A 173:117CrossRefGoogle Scholar
  30. 30.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Chevary A, Vosko SH, Jackson KA, Pederson MR, Singh DJ (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  32. 32.
    Blochl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  33. 33.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 12:5188CrossRefGoogle Scholar
  34. 34.
    Henkelman G, Uberuaga BP, Jonsson H (2000) J Chem Phys 113:990Google Scholar
  35. 35.
    Soto-Verdugo V, Metiu H (2007) Surf Sci 601:5332CrossRefGoogle Scholar
  36. 36.
    Ulan JG, Maier WF, Smith DA (1987) J Org Chem 52:3132CrossRefGoogle Scholar
  37. 37.
    Ulan JG, Kuo E, Maier WF, Rai RS, Thomas G (1987) J Org Chem 52:3126CrossRefGoogle Scholar
  38. 38.
    Schlogl R, Noack K, Zbinden H, Reller A (1987) Helv Chim Acta 70:627CrossRefGoogle Scholar
  39. 39.
    Hammer B, Morikawa Y, Nørskov JK (1996) Phys Rev Lett 76:2141CrossRefGoogle Scholar
  40. 40.
    Greenwood NN, Earnshaw A (2008) In: Chemistry of the elements, 2nd edn. Elsevier, p 1150Google Scholar
  41. 41.
    Knapton AG (1977) Plat Met Rev 21:44Google Scholar
  42. 42.
    Andersin J, López N, Honkala K (2009) J Phys Chem C 113:8278CrossRefGoogle Scholar
  43. 43.
    Andersin J, Honkala K (2010) Surf Sci 604:762CrossRefGoogle Scholar
  44. 44.
    Nykanen L, Andersin J, Honkala K (2010) Phys Rev B 81:075417CrossRefGoogle Scholar
  45. 45.
    Seriani N, Mittendorfer F, Kresse G (2010) J Chem Phys 132:024711CrossRefGoogle Scholar
  46. 46.
    Bond GC (2005) Springer, New York, p 395Google Scholar
  47. 47.
    Teschner D, Borsodi J, Wootsch A, Revay Z, Havecker M, Knop-Gericke A, Jackson SD, Schlogl R (2008) Science 320:86CrossRefGoogle Scholar
  48. 48.
    Mitsui T, Rose MK, Fomin E, Ogletree DF, Salmeron M (2003) Nature 422:705CrossRefGoogle Scholar
  49. 49.
    López N, Łodziana Z, Illas F, Salmeron M (2004) Phys Rev Lett 14:146103CrossRefGoogle Scholar
  50. 50.
    Greeley J, Krekelberg WR, Mavrikakis M (2004) Angew Chem Int Ed 43:4296CrossRefGoogle Scholar
  51. 51.
    Palczewska W, Ratajczykowa I, Szymerska I, Krawczyk M (1984). In: Proceedings of the 8th international congress on catalysis, Berlin, vol IV, p 713Google Scholar
  52. 52.
    Brunauer S, Emmett PH, Teller E (1938) J Am Chem Soc 60:309CrossRefGoogle Scholar
  53. 53.
    Santarossa G, Iannuzzi M, Vargas A, Baiker A (2008) ChemPhysChem 9:401CrossRefGoogle Scholar
  54. 54.
    Ulan GJ, Kuo E, Maier WF, Rai RS, Thomas G (1986) J Org Chem 52:3126CrossRefGoogle Scholar
  55. 55.
    Grimme S (2006) J Comput Chem 27:1787CrossRefGoogle Scholar
  56. 56.
    Mercurio G, McNellis ER, Martin I, Hagen S, Leyssner F, Soubatch S, Meyer J, Wolf M, Tegeder P, Tautz FS, Reuter K (2010) Phys Rev Lett 104:036102CrossRefGoogle Scholar
  57. 57.
    Chen MS, Kumar D, Yi CW, Goodman DW (2005) Science 310:291CrossRefGoogle Scholar
  58. 58.
    García-Mota M, López N (2008) J Am Chem Soc 130:14406CrossRefGoogle Scholar
  59. 59.
    Jia JF, Haraki K, Kondo JN, Domen K, Tamaru K (2000) J Phys Chem B 104:11153CrossRefGoogle Scholar
  60. 60.
    Studt F, Abild-Pedersen F, Bligaard T, Sørensen RZ, Christensen CH, Nørskov JK (2008) Angew Chem Int Ed 47:9299Google Scholar
  61. 61.
    Abild-Pedersen F, Greeley J, Studt F, Rossmeisl J, Munter TR, Moses PG, Skulason E, Bligaard T, Nørskov JK (2007) Phys Rev Lett 99:16105CrossRefGoogle Scholar
  62. 62.
    Cerveny L, Paseka I, Surma K, Thanh NT, Ruzicka V (1985) Collect Czech Chem Commun 50:61CrossRefGoogle Scholar
  63. 63.
    Horiuti J, Polanyi M (1934) Trans Faraday Soc 30:1164CrossRefGoogle Scholar
  64. 64.
    Siegel S, Hawkins JA (1986) J Org Chem 51:1638CrossRefGoogle Scholar
  65. 65.
    Anderson JA, Mellor J, Wells RPK (2009) J Catal 261:208CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • M. García-Mota
    • 1
  • J. Gómez-Díaz
    • 1
  • G. Novell-Leruth
    • 1
  • C. Vargas-Fuentes
    • 1
  • L. Bellarosa
    • 1
  • B. Bridier
    • 2
  • J. Pérez-Ramírez
    • 2
  • N. López
    • 1
  1. 1.Institute of Chemical Research of Catalonia (ICIQ)TarragonaSpain
  2. 2.Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH ZürichZürichSwitzerland

Personalised recommendations