Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 569–577 | Cite as

A variational transition state theory description of periselectivity effects on cycloadditions of ketenes with cyclopentadiene

  • Juan Manuel Ramírez-Anguita
  • Ricard Gelabert
  • Àngels González-Lafont
  • Miquel Moreno
  • José M. Lluch
Regular Article


The reaction of cycloaddition of ketene and cyclopentadiene presents experimentally a competing mechanism where the branching ratio between the Woodward–Hoffmann allowed [4+2] and forbidden [2+2] cycloaddition product is 4.56 at −20 °C, but because the minimum energy path misses the [2+2] product altogether, it has been claimed to lie beyond the scope of transition state theory. In this paper, a variational transition state theory study on this reaction is presented. It is found that the minimum energy path affording the [4+2] product travels through a potential energy plateau very close to the minimum energy path that describes the interconversion between both cycloaddition products, allowing the transfer between both and the direct formation of the forbidden [2+2] product, in this way acting as a means to circumvent the Woodward–Hooffmann rules. Within the domain of the competitive canonical unified statistical theory, a value for the branching ratio in very good agreement with experiment is computed.


Variational transition state theory Woodward–Hoffmann rules Non-symmetrical bifurcating surfaces Cycloaddition reaction 



The authors are grateful for financial support from the “Ministerio de Ciencia e Innovación” (project CTQ2008-02403/BQU) and from the “Generalitat de Catalunya” (project 2009SGR409). The use of supercomputer facilities at the “Centre de Supercomputació de Catalunya” (CESCA) is gratefully acknowledged.


  1. 1.
    Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  2. 2.
    Fernández-Ramos A, Miller JA, Klippenstein SJ, Truhlar DG (2006) Chem Rev 106:4518–4584CrossRefGoogle Scholar
  3. 3.
    Truhlar DG, Isaacson AD, Garrett BC (1985) Theory of chemical reactions, vol 4. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Truhlar DG, Garrett BC (1980) Acc Chem Res 13:440–448CrossRefGoogle Scholar
  5. 5.
    Bakken V, Danovich D, Shaik S, Schlegel HB (2001) J Am Chem Soc 123:130–134CrossRefGoogle Scholar
  6. 6.
    Singleton DA, Hang C, Szymanski MJ, Meyer MP, Leach AG, Kuwata KT, Chen JS, Greer A, Foote CS, Houk KN (2003) J Am Chem Soc 125:1319–1328CrossRefGoogle Scholar
  7. 7.
    Singleton DA, Hang C, Szymanski MJ, Greenwald EE (2003) J Am Chem Soc 125:1176–1177CrossRefGoogle Scholar
  8. 8.
    Thomas JB, Waas JR, Harmata M, Singleton DA (2008) J Am Chem Soc 130:14544–14555CrossRefGoogle Scholar
  9. 9.
    González-Lafont A, Moreno M, Lluch JM (2004) J Am Chem Soc 126:13089–13094CrossRefGoogle Scholar
  10. 10.
    Hu WP, Truhlar DG (1996) J Am Chem Soc 118:860–869CrossRefGoogle Scholar
  11. 11.
    Ussing BR, Hang C, Singleton DA (2006) J Am Chem Soc 128:7594–7607CrossRefGoogle Scholar
  12. 12.
    Woodward RB, Hoffmann R (1969) Angew Chem Int Ed Engl 8:781–853CrossRefGoogle Scholar
  13. 13.
    Yamabe S, Dai TS, Minato T, Machiguchi T, Hasegawa T (1996) J Am Chem Soc 118:6518–6519CrossRefGoogle Scholar
  14. 14.
    Machiguchi T, Hasegawa T, Ishiwata A, Terashima S, Yamabe S, Minato T (1999) J Am Chem Soc 121:4771–4786CrossRefGoogle Scholar
  15. 15.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  16. 16.
    Kohn W, Becke AD, Parr RG (1996) J Phys Chem 100:12974–12980CrossRefGoogle Scholar
  17. 17.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  18. 18.
    Gunnarsson O, Lundqvist BI (1976) Phys Rev B 13:4274–4298CrossRefGoogle Scholar
  19. 19.
    Langreth DC, Perdew JP (1977) Phys Rev B 15:2884–2901CrossRefGoogle Scholar
  20. 20.
    Lynch BJ, Truhlar DG (2001) J Phys Chem A 105:2936–2941CrossRefGoogle Scholar
  21. 21.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  22. 22.
    Pechukas P (1976) J Chem Phys 64:1516–1521CrossRefGoogle Scholar
  23. 23.
    Villà J, Corchado JC, González-Lafont A, Lluch JM, Truhlar DG (1999) J Phys Chem A 103:5061–5074CrossRefGoogle Scholar
  24. 24.
    Masgrau L, González-Lafont A, Lluch JM (2001) J Chem Phys 114:2154–2165CrossRefGoogle Scholar
  25. 25.
    Fernández-Ramos A, Ellingson BA, Meana-Pañeda R, Marques JMC, Truhlar DG (2007) Theor Chem Acc 118:813–826CrossRefGoogle Scholar
  26. 26.
    Page M, McIver JW (1988) J Chem Phys 88:922–935CrossRefGoogle Scholar
  27. 27.
    Villà J, Truhlar DG (1997) Theor Chem Acc 97:317–323CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Garrett BC, Truhlar DG (1982) J Chem Phys 76:1853–1858CrossRefGoogle Scholar
  30. 30.
    Miller WH (1976) J Chem Phys 65:2216–2223CrossRefGoogle Scholar
  31. 31.
    Hirschfelder JO, Wigner E (1939) J Chem Phys 7:616–628CrossRefGoogle Scholar
  32. 32.
    Zheng J, Papajak E, Truhlar DG (2009) J Am Chem Soc 131:15754–15760CrossRefGoogle Scholar
  33. 33.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., WallingfordGoogle Scholar
  34. 34.
    Corchado JC, Chuang YY, Coitiño EL, Truhlar DG (2006, June) GaussRate, version 9.4. See http://comp.chem.umn,edu/gaussrate (accessed 4 Aug 2010); University of Minnesota, Minneapolis
  35. 35.
    Corchado JC et al (2006 Nov) PolyRate, version 9.4.3. See (accessed 4 Aug 2010); University of Minnesota, Minneapolis

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Juan Manuel Ramírez-Anguita
    • 1
  • Ricard Gelabert
    • 1
  • Àngels González-Lafont
    • 1
  • Miquel Moreno
    • 1
  • José M. Lluch
    • 1
  1. 1.Departament de QuímicaUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations