Theoretical Chemistry Accounts

, Volume 128, Issue 4–6, pp 445–456 | Cite as

Causes of energy destabilization in carbon nanotubes with topological defects

  • Francisco J. Martín-Martínez
  • Santiago Melchor
  • José A. Dobado
Regular Article


The relative stability of a family of carbon nanotubes (CNT) with defects has been investigated theoretically with first-principles density functional theory (DFT) calculations, B3LYP/6-31G*. A set of (12,0)–(8,0) CNT heterojunctions with an increasing number (n = 1–4) of pentagon/heptagon defects were studied systematically in different arrangements, and the results were compared with a set of small defective graphene fragments. In addition, tubular structures with two pairs of defects distributed variedly (along and around the CNT) with increasing distances were considered. Within the defective structures, those containing the well-known Stone–Wales defect proved to be the most stable. However, when more than two pairs of defects coexisted, situations where the defects appeared together seemed to be preferred, in sharp contrast to the isolated pentagon rule (IPR) for fullerenes, although this agrees with some previous works on this topic. The junctions studied here constitute different arrangements that help us to identify which effects (geometry and energy) arise from the particular positions and orientations of the defects in nanotubes. Moreover, a close correlation was found between the energy stability and the geometric deformation, measured with the average pyramidalization angle (POAV) and the average trigonal deformation (D120). For this purpose, the different contributions to molecular strain were analysed with the TubeAnalyzer software.


Carbon nanotube (CNT) Heterojunction (HJ) Topological defects DFT Stone–Wales Sadoc knee Dunlap knee Isolated pentagon rule (IPR) 


  1. 1.
    Iijima S (1991) Nature 354:56CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Nature 363:603CrossRefGoogle Scholar
  3. 3.
    Dresselhaus MS, Dresselhauss G, Eklund RC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  4. 4.
    Ebbesen TW, Takada T (1995) Carbon 33 7:973CrossRefGoogle Scholar
  5. 5.
    Kosaka M, Ebbesen TW, Hiura H, Tanigaki K (1995) Chem Phys Lett 233:47CrossRefGoogle Scholar
  6. 6.
    Iijima S, Ajayan PM, Ichihashi T (1992) Phys Rev Lett 69:3100CrossRefGoogle Scholar
  7. 7.
    Iijima S, Ichihashi T, Ando Y (1992) Nature 356:776CrossRefGoogle Scholar
  8. 8.
    Charlier J-C (2002) Acc Chem Res 35:1063CrossRefGoogle Scholar
  9. 9.
    Meunier V, Lambin Ph (1998) Phys Rev Lett 81:5588CrossRefGoogle Scholar
  10. 10.
    Charlier J-C, Ebbesen TW, Lambin Ph (1996) Phys Rev B 53:11108CrossRefGoogle Scholar
  11. 11.
    Garau C, Frontera A, Quiñonero D, Costa A, Ballester P, Deyá PM (2004) Chem Phys 303:265CrossRefGoogle Scholar
  12. 12.
    Yao Z, Postma HWC, Balents L, Dekker C (1999) Nature 402:273CrossRefGoogle Scholar
  13. 13.
    Hashimoto A, Suenaga K, Gloter A, Urita K, Iijima S (2004) Nature 430:870CrossRefGoogle Scholar
  14. 14.
    Ouyang M, Huang JL, Cheung CL, Lieber CM (2001) Science 291:97CrossRefGoogle Scholar
  15. 15.
    Dunlap BI (1992) Phys Rev B 46:1933CrossRefGoogle Scholar
  16. 16.
    Dunlap BI (1994) Phys Rev B 49:5643CrossRefGoogle Scholar
  17. 17.
    Wei D, Liu Y (2008) Adv Mater 20:2815CrossRefGoogle Scholar
  18. 18.
    Chico L, Benedict LX, Louie SG, Cohen ML (1996) Phys Rev B 54:2600CrossRefGoogle Scholar
  19. 19.
    Collins PG, Zettl A, Bando H, Thess A, Smalley RE (1997) Science 278:100CrossRefGoogle Scholar
  20. 20.
    Xu H (2005) Nat Mat 4:649–650CrossRefGoogle Scholar
  21. 21.
    Tamura R, Tsukada M (1994) Phys Rev B 49:7697CrossRefGoogle Scholar
  22. 22.
    Austin SJ, Fowler PW, Manolopoulos DE, Orlandi G, Zerbetto F (1995) J Phys Chem 99:8076CrossRefGoogle Scholar
  23. 23.
    Austin SJ, Fowler PW, Orlandi G, Manolopoulos DE, Zerbetto F (1994) Chem Phys Lett 226:219CrossRefGoogle Scholar
  24. 24.
    Yang S, Popov AA, Dunsch L (2007) Angew Chem Int Ed Engl 46:1256CrossRefGoogle Scholar
  25. 25.
    Ewels CP (2006) Nano Lett 6:890CrossRefGoogle Scholar
  26. 26.
    Fa W, Yang X, Chen J, Dong J (2004) Phys Lett A 323:122CrossRefGoogle Scholar
  27. 27.
    Stone AJ, Wales DJ (1986) Chem Phys Lett 128:501CrossRefGoogle Scholar
  28. 28.
    Monthioux M (2002) Carbon 40:1809CrossRefGoogle Scholar
  29. 29.
    Zhou LG, Shi San-Qiang (2003) Appl Phys Lett 83:1222CrossRefGoogle Scholar
  30. 30.
    Lu X, Chen Z, Schleyer PvR (2005) J Am Chem Soc 127:20CrossRefGoogle Scholar
  31. 31.
    Pan BC, Yang WS, Yang J (2000) Phys Rev B 62:12652CrossRefGoogle Scholar
  32. 32.
    Ding F (2005) Phys Rev B 72:245409CrossRefGoogle Scholar
  33. 33.
    Zhou T, Yang L, Wu J, Duan W, Gu BL (2005) Phys Rev B 72:193407CrossRefGoogle Scholar
  34. 34.
    Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 434:86CrossRefGoogle Scholar
  35. 35.
    Bylaska EJ, de Jong WA, Kowalski K, Straatsma TP, Valiev M, Wang D, Aprà E, Windus TL, Hirata S, Hackler MT, Zhao Y, Fan P-D, Harrison RJ, Dupuis M, Smith DMA, Nieplocha J, Tipparaju V, Krishnan M, Auer AA, Nooijen M, Brown E, Cisneros G, Fann GI, Früchtl H, Garza J, Hirao K, Kendall R, Nichols JA, Tsemekhman K, Wolinski K, Anchell J, Bernholdt D, Borowski P, Clark T, Clerc D, Dachsel H, Deegan M, Dyall K, Elwood D, Glendening E, Gutowski M, Hess A, Jaffe J, Johnson B, Ju J, Kobayashi R, Kutteh R, Lin Z, Littlefield R, Long X, Meng B, Nakajima T, Niu S, Pollack L, Rosing M, Sandrone G, Stave M, Taylor H, Thomas G, van Lenthe J, Wong A, Zhang Z (2006) NWChem, a computational chemistry package for parallel computers, version 5.0. Pacific Northwest National Laboratory, Richland, Washington, DC, 99352-0999, USAGoogle Scholar
  36. 36.
    Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP, Windus TL, Wong AT (2000) Comput Phys Commun 128:260CrossRefGoogle Scholar
  37. 37.
    Becke ADJ (1993) Chem Phys 98:5648Google Scholar
  38. 38.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  39. 39.
    Martín-Martínez FJ, Melchor S, Dobado JA (2008) Org Lett 10:1991CrossRefGoogle Scholar
  40. 40.
    Melchor S, Dobado JA, Larsson JA, Greer JC (2003) J Am Chem Soc 125:2301CrossRefGoogle Scholar
  41. 41.
    Melchor S, Molina JM (1999) J Comput Chem 20:1412CrossRefGoogle Scholar
  42. 42.
    Melchor S, Dobado JA (2004) J Chem Inf Comput Sci 44:1639CrossRefGoogle Scholar
  43. 43.
  44. 44.
    Haddon RC (1988) Acc Chem Res 21:243CrossRefGoogle Scholar
  45. 45.
    Haddon RC (1993) Science 261:1545CrossRefGoogle Scholar
  46. 46.
    Chen Y, Haddon RC, Fang S, Rao AM, Eklund PC, Lee WH, Dickey EC, Grulke EA, Pendergrass JC, Chavan A, Haley BE, Smalley RE (1998) J Mater Res 13:2423CrossRefGoogle Scholar
  47. 47.
    Srivastava D, Brenner DW, Schall JD, Ausman KD, Yu M, Ruoff RS (1999) J Phys Chem B 103:4330CrossRefGoogle Scholar
  48. 48.
    Osuna S, Swart M, Campanera JM, Poblet JM, Solá M (2008) J Am Chem Soc 130:6206CrossRefGoogle Scholar
  49. 49.
    Haddon RC, Scuseria GE, Smalley RE (1997) Chem Phys Lett 272:38CrossRefGoogle Scholar
  50. 50.
    Haddon RC, Scott LT (1986) Pure Appl Chem 58:137CrossRefGoogle Scholar
  51. 51.
    Haddon RC (1986) J Am Chem Soc 108:2837CrossRefGoogle Scholar
  52. 52.
    TubeAnalyzer, a program written by S. Melchor, Grupo de Modelización y Diseño Molecular, Dpto. de Química Orgánica, Universidad de Granada, Spain, 2007. See ref. 39 for further detailsGoogle Scholar
  53. 53.
    Melchor S, Khokhriakov NV, Savinskii SS (1999) Mol Eng 8:315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Francisco J. Martín-Martínez
    • 1
  • Santiago Melchor
    • 1
  • José A. Dobado
    • 1
  1. 1.Grupo de Modelización y Diseño Molecular, Departamento de Química Orgánica, Facultad de CienciasUniversidad de GranadaGranadaSpain

Personalised recommendations