Advertisement

Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 711–725 | Cite as

The physical chemistry of [M(H2O)4(NO3)2] (M = Mn2+, Co2+, Ni2+, Cu2+, Zn2+) complexes: computational studies of their structure, energetics and the topological properties of the electron density

  • Pradeep R. VaradwajEmail author
  • Helder M. Marques
Regular Article

Abstract

The complexes of M2+ (M = Mn, Co, Ni, Cu, Zn), trans-[M(H2O)4(NO3)2] in their high-spin ground electronic states have been investigated theoretically for the first time using several correlated DFT levels as well as with the MP2 method in conjunction with two different basis sets, 6-311++G(d, p) and LANL2TZ+/6-311++G(d, p), to examine their equilibrium structures and stabilities. Among the correlated methods, the X3LYP level together with the 6-311++G(d, p) basis set gives the best estimate of geometries in these complexes. The metal–ligand binding energies obtained follow the trend Cu2+ > Ni2+ > Zn2+ > Co2+ > Mn2+ across the series examined, in precise agreement with the Irving-Williams series. The DFT methods largely overestimate the binding energies compared to the MP2 level and the trend follows the order PW91PW91 < PBEPBE < X3LYP < B3LYP < MP2. The use of an ECP basis on the central metal cation and a 6-311++G(d, p) basis set on the main group elements increases the binding energies of the complexes compared to that found using the full-core basis set 6-311++G(d, p) and the energy difference between them can be as large as 20 kcal mol−1. There are significant differences between the structures calculated in the gas phase and those calculated with the PCM model to simulate the effect of solvent. Solvation shortens the M–OH2 bonds and lengthens the M–ONO2 bonds such that the difference between the computed and the crystallographically observed bond lengths tends to decrease; it increases complex stability; and that it leads to the disappearance of two intramolecular H bonds between OH2 and NO 3 ligands that are present in the gas-phase structures. While there are differences between the natural populated atomic charges and Bader’s approach of the quantum theory of atoms in molecules (QTAIM), all show charge transfer from the ligands to the metal ion. However, the MP2-level-computed charges were found to be unreliable compared with the DFT-derived charges. The metal–ligand bonding and the intramolecular H bonding in the complex are explored with QTAIM and the insight gained into the electronic structure of these complexes is discussed.

Keywords

Late transition metal complexes Nitrate complexes Polarized continuum solvent model Intramolecular hydrogen bonding Atoms in molecules-DFT & MP2 studies 

Notes

Acknowledgments

PRV acknowledges the Japan Society for the Promotion of Science (JSPS) for the award of a Postdoctoral Fellowship and financial support received for conducting research at the Department of Chemistry of Okayama University, Okayama, Japan. PRV gratefully acknowledges Professor K. Kawaguchi for his kind support during this work and thanks the Osaka University computer center for providing supercomputing facilities. HMM thanks the Department of Science and Technology and the National Research Foundation, Pretoria, for funding through the South African Research Chairs Initiative.

Supplementary material

214_2010_781_MOESM1_ESM.doc (28.4 mb)
Supplementary material 1 (DOC 29091 kb)

References

  1. 1.
    Varadwaj PR, Cukrowski I, Marques HM (2008) J Phys Chem A 112:10657CrossRefGoogle Scholar
  2. 2.
    Varadwaj PR, Cukrowski I, Marques HM (2009) J Mol Str (Theochem) 902:21Google Scholar
  3. 3.
    Varadwaj PR, Marques HM (2010) Phys Chem Chem Phys 12:2126CrossRefGoogle Scholar
  4. 4.
    Barnett SA, Blake AJ, Champness NR, Wilson C (2005) Dalton Trans 3852Google Scholar
  5. 5.
    Pelizzi C, Pelizzi G, Tarasconi P (1985) J Organomet Chem 281:403CrossRefGoogle Scholar
  6. 6.
    Beauchamp DA, Loeb SJ (2002) Chem Eur J 8:5084CrossRefGoogle Scholar
  7. 7.
    Barnett SA, Blake AJ, Champness NR, Wilson C (2002) J Supramol Chem 2:17CrossRefGoogle Scholar
  8. 8.
    Oomens J, Myers L, Dain R, Leavitt C, Pham V, Gresham G, Groenewold G, Van Stipdonk M (2008) Int J Mass Spec 273:24CrossRefGoogle Scholar
  9. 9.
    Brandn SA, Socolsky C, Altabef AB (2009) Z Anorg Allg Chem 635:582CrossRefGoogle Scholar
  10. 10.
    Morris DFC, MacCarthy JD, Newton RJ (1978) Electrochim Acta 23:1383CrossRefGoogle Scholar
  11. 11.
    Aruga R (1975) J Chem Soc Dalton Trans 2534Google Scholar
  12. 12.
    Hutchinson MH, Higginson CE (1973) J Chem Soc Dalton Trans 1247Google Scholar
  13. 13.
    Martell AE, Motekaites RJ (1992) Determination and use of stability constants, 2nd edn. Wiley-VCH, New YorkGoogle Scholar
  14. 14.
    Ohtaki H, Radnai T (1993) Chem Rev 93:1157CrossRefGoogle Scholar
  15. 15.
    Ramesh SG, Re S, Hynes JT (2008) J Phys Chem A 112:3391CrossRefGoogle Scholar
  16. 16.
    Pathak AK, Mukherjee T, Maity DK (2008) J Phys Chem A 112:3399CrossRefGoogle Scholar
  17. 17.
    Goebbert DJ, Garand E, Wende T, Bergmann R, Meijer G, Asmis KR, Neumark DM (2009) J Phys Chem A 113:7584CrossRefGoogle Scholar
  18. 18.
    Popov D, Herak R, Prelesnik B, Ribár B (1973) Zeit Krist 137:280Google Scholar
  19. 19.
    Popov D, Herak R, Radulovic N, Ribár B (1975) Zeit Krist 142:347CrossRefGoogle Scholar
  20. 20.
    Ribár B, Milinski N, Herak R, Krstanovic I, Djuric S (1976) Zeit Krist 144:133CrossRefGoogle Scholar
  21. 21.
    Blake AJ, Brett MT, Champness NR, Khlobystov AN, Long D-L, Wilson C, Schroder M (2001) J Chem Soc Chem Commun 2258Google Scholar
  22. 22.
    Siegler MA, Parkin S, Selegue JP, Brock CP (2008) Acta Crystallogr Sect B 64:725Google Scholar
  23. 23.
    Bigoli F, Braibanti A, Tiripicchio A, Tiripicchio Camellini M (1971) Acta Cryst Sec B 27:1427CrossRefGoogle Scholar
  24. 24.
    Ribár B, Milinski N (1975) Zeit Krist 142:303CrossRefGoogle Scholar
  25. 25.
    Gallezot P, Weigel D, Prettre M (1967) Acta Cryst 22:699CrossRefGoogle Scholar
  26. 26.
    Morosin B, Haseda T (1979) Acta Cryst Sec B 35:2856CrossRefGoogle Scholar
  27. 27.
    Ribar B, Milinski N (1977) Zeit Krist 144:126CrossRefGoogle Scholar
  28. 28.
    Petrovic D, Ribár B (1975) Acta Cryst Sec B 31:1795CrossRefGoogle Scholar
  29. 29.
    Ribár B, Nowacki W, Sljukic M, Scavnicar S, Gabela F (1969) Zeit Krist 129:305CrossRefGoogle Scholar
  30. 30.
    Ribar B, Nowacki W, Slujik M, Gabela F, Matkovic B (1970) Zeit Krist 131:175CrossRefGoogle Scholar
  31. 31.
    Jacquemin D, Perpete EA, Ciofini I, Adamo C (2005) Chem Phys Lett 405:376CrossRefGoogle Scholar
  32. 32.
    Xu X, Goddard WA (2004) Proc Natl Acad Sci USA 101:2673CrossRefGoogle Scholar
  33. 33.
    Xu X, Goddard WA (2004) J Phys Chem A 108:2305CrossRefGoogle Scholar
  34. 34.
    Xu X, Zhang Q, Muller RP, Goddard WA (2005) J Chem Phys 122:14105CrossRefGoogle Scholar
  35. 35.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  36. 36.
    Stephens PJ, Devlin JF, Chabalowski CF, Frisch MJ (1994) J Phys Chem 98:11623CrossRefGoogle Scholar
  37. 37.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  38. 38.
    Burke K, Perdew JP, Wang Y (1997) In: Dobson JF, Vignale G, Das MP (eds) Electronic density functional theory: recent progress and new directions. Plenum Press, New York, p 81Google Scholar
  39. 39.
    Curtiss LA, Raghavachari K, Pople JA (1993) J Chem Phys 98:1293CrossRefGoogle Scholar
  40. 40.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151CrossRefGoogle Scholar
  41. 41.
    Cossi M, Barone V, Mennucci B, Tomasi J (1998) Chem Phys Lett 286:253CrossRefGoogle Scholar
  42. 42.
    Bader RF (1990) Atoms in molecules: a quantum theory. Oxford University Press, OxfordGoogle Scholar
  43. 43.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JJA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, 2003. Gaussian Inc., PittsburgGoogle Scholar
  44. 44.
    Dennington R, Keith T, Millam J (2007) GaussView, 4.1. Semichem, Inc., Shawnee MissionGoogle Scholar
  45. 45.
    Roy LE, Hay PJ, Martin RL (2008) J Chem Theory Comput 4:1029CrossRefGoogle Scholar
  46. 46.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  47. 47.
    Reed AE, Wienhold F, Curtiss LA, Pochatko DJ (1986) J Chem Phys 84:5687CrossRefGoogle Scholar
  48. 48.
    Weinhold F (1998) In: Schleyer PvR, Allinger NL, Clark T, Gasteiger J, Kollman PA, Schaefer HF, Schreiner PR (eds) Encyclopedia of computational chemistry, vol 3. Wiley, Chichester, p 1792Google Scholar
  49. 49.
    Glendening EE, Reed AE, Carpenter JE, Weinhold F (2004) NBO (Natural Bond Orbital), 3.0, as implemented in GAUSSIAN 03, Gaussian Inc., PittsburgGoogle Scholar
  50. 50.
    Keith TA (2008) AIMAll, 08.05.04, http://aim.tkgristmill.com
  51. 51.
    Jeanvoine Y, Spezia R (2009) J Phys Chem A 113:7878CrossRefGoogle Scholar
  52. 52.
    Nicolaides CA, Simandiras ED (1992) Chem Phys Lett 196:213CrossRefGoogle Scholar
  53. 53.
    Tan X-J, Zhu W-L, Cui M, Luo X-M, Gu J-D, Silman I, Sussman JL, Jiang H-L, Ji R-Y, Chen K-X (2001) Chem Phys Lett 349:113CrossRefGoogle Scholar
  54. 54.
    Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117CrossRefGoogle Scholar
  55. 55.
    Shannon RD (1976) Acta Cryst A32:751Google Scholar
  56. 56.
    Portier J, Campert G, Etourneau J, Tanguy B (1994) J Alloys Cmpds 209:285CrossRefGoogle Scholar
  57. 57.
    Luna A, Alcamí M, Mó O, Yáñez M (2000) Chem Phys Lett 320:129CrossRefGoogle Scholar
  58. 58.
    Lynch BJ, Truhlar DG (2002) Chem Phys Lett 361:251CrossRefGoogle Scholar
  59. 59.
    Bader RFW, Essén H (1984) J Chem Phys 80:1943CrossRefGoogle Scholar
  60. 60.
    Bobrov MF, Popova GV, Tsirelson VG (2006) Russ J Phys Chem 80:584CrossRefGoogle Scholar
  61. 61.
    Bader RFW, Slee TS, Cremer D, Kraka E (1983) J Am Chem Soc 105:5061CrossRefGoogle Scholar
  62. 62.
    Howard ST, Krygowski TM (1997) Can J Chem 75:1174CrossRefGoogle Scholar
  63. 63.
    O’Brien SE, Popelier PL (1999) Can J Chem 77:28CrossRefGoogle Scholar
  64. 64.
    Bader RFW, Matta CF, Cortés-Guzmán F (2004) Organometallics 23:6253CrossRefGoogle Scholar
  65. 65.
    Vidal I, Melchor S, Alkorta I, Elguero J, Sundberg MR, Dobado JA (2006) Organometallics 25:5638CrossRefGoogle Scholar
  66. 66.
    González L, Mó O, Yáñez M, Elguero J (1996) J Mol Str 371:1Google Scholar
  67. 67.
    Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Acta Cryst B 55:563CrossRefGoogle Scholar
  68. 68.
    Grabowski SJ (2000) J Phys Chem A 105:5551CrossRefGoogle Scholar
  69. 69.
    Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513CrossRefGoogle Scholar
  70. 70.
    Bone RGA, Bader RFW (1996) J Phys Chem 100:10892CrossRefGoogle Scholar
  71. 71.
    Espinosa E, Molins E, Lecomte C (1998) Chem Phys Lett 285:170CrossRefGoogle Scholar
  72. 72.
    Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23:627CrossRefGoogle Scholar
  73. 73.
    Cremer D, Kraka E (1984) Croat Chem Acta 57:1259Google Scholar
  74. 74.
    Jenkins S, Morrison I (2000) Chem Phys Lett 317:97CrossRefGoogle Scholar
  75. 75.
    Espinosa E, Alkorta I, Elguero J, Molins E (2002) J Chem Phys 117:5529CrossRefGoogle Scholar
  76. 76.
    Macchi P, Sironi A (2003) Coord Chem Rev 238–239:383CrossRefGoogle Scholar
  77. 77.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512CrossRefGoogle Scholar
  78. 78.
    Ribár B, Herak R, Prelesnik B, Krstanovic I, Milinski N (1976) Zbor Rad Prirodno-Matemat Fakul Ser biolog, Univ Novi Sad 5:65Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Faculty of Sciences, Department of ChemistryOkayama UniversityOkayama City, OkayamaJapan
  2. 2.Molecular Sciences Institute, School of ChemistryUniversity of the WitwatersrandJohannesburgSouth Africa

Personalised recommendations