Theoretical Chemistry Accounts

, Volume 127, Issue 4, pp 271–284 | Cite as

Theoretical advances in the dissolution studies of mineral–water interfaces

  • Shikha Nangia
  • Barbara J. Garrison
Feature Article


This article presents theoretical advances in computational modeling of dissolution at mineral–water interfaces with specific emphasis on silicates. Two different Monte Carlo methods have been developed that target equilibrium properties and kinetics in silicate–water dissolution. The equilibrium properties are explored using the combined reactive Monte Carlo and configurational bias Monte Carlo (RxMC-CBMC) method. The new RxMC-CBMC method is designed to affordably simulate the three-dimensional structure of the mineral with explicit water molecules. The kinetics of the overall dissolution process is studied using a stochastic kinetic Monte Carlo method that utilizes rate constants obtained from accurate ab initio calculations. Both these methods provide important complementary perspective of the complex dynamics involving chemical and physical interactions at the mineral–water interface. The results are compared to experimental and previous computational data available in the literature.


Dissolution Reactive Monte Carlo Mineral–water interfaces Kinetic Monte Carlo Silicates Quartz 



We gratefully acknowledge the useful discussions with K. T. Mueller, J. D. Kubicki, and S. L. Brantley on this work. This project has been supported by the National Science Foundation NSF under the Grant Number CHE-0535656.


  1. 1.
    Chen Y, Brantley SL (1997) Chem Geol 135:275CrossRefGoogle Scholar
  2. 2.
    Oelkers EH, Schott J, Devidal JL (1994) Geochim Cosmochim Acta 58:2011CrossRefGoogle Scholar
  3. 3.
    House WAJ (1992) Chem Soc Faraday Trans 88:233CrossRefGoogle Scholar
  4. 4.
    Bennett PC, Melcer ME, Siegel DI, Hassett JP (1988) Geochim Cosmochim Acta 52:1521CrossRefGoogle Scholar
  5. 5.
    Bennett PC (1991) Geochim Cosmochim Acta 55:1781CrossRefGoogle Scholar
  6. 6.
    Casey WH, Sposito G (1992) Geochim Cosmochim Acta 56:3825CrossRefGoogle Scholar
  7. 7.
    Agger JR, Hanif N, Anderson MW (2001) Angewandte Chemie-Int Ed 40:4065CrossRefGoogle Scholar
  8. 8.
    Anbeek C (1992) Geochim Cosmochim Acta 56:1461CrossRefGoogle Scholar
  9. 9.
    Arvidson RS, Beig MS, Luttge A (2004) Am Mineral 89:51Google Scholar
  10. 10.
    Brady PV, Walther JV (1990) Chem Geol 82:253CrossRefGoogle Scholar
  11. 11.
    Brantley SL (2004) Treatise Geochem 5:73Google Scholar
  12. 12.
    Carroll SA, Maxwell RS, Bourcier W, Martin S, Hulsey S (2002) Geochim Cosmochim Acta 66:913CrossRefGoogle Scholar
  13. 13.
    Casey WH, Hochella MF Jr, Westrich HR (1993) Geochim Cosmochim Acta 57:785CrossRefGoogle Scholar
  14. 14.
    Casey WH, Lasaga AC, Gibbs GV (1990) Geochim Cosmochim Acta 54:3369CrossRefGoogle Scholar
  15. 15.
    Chuang I-S, Maciel GEJ (1996) Am Chem Soc 118:401CrossRefGoogle Scholar
  16. 16.
    Dove PM (1995) Rev Mineral 31:235Google Scholar
  17. 17.
    Dove PM (1999) Geochim Cosmochim Acta 63:3715CrossRefGoogle Scholar
  18. 18.
    Dove PM, Crerar DA (1990) Geochim Cosmochim Acta 54:955CrossRefGoogle Scholar
  19. 19.
    Dove PM, Elston SF (1992) Geochim Cosmochim Acta 56:4147CrossRefGoogle Scholar
  20. 20.
    Dove PM, Han N, Wallace AF, De Yoreo JJ (2008) Proc Natl Acad Sci USA 105:9903CrossRefGoogle Scholar
  21. 21.
    Dove PM, Han N, Yoreo JJD (2005) PNAS 102:15357CrossRefGoogle Scholar
  22. 22.
    Dove PM, Platt FM (1996) Chem Geol 127:331CrossRefGoogle Scholar
  23. 23.
    Du Q, Freysz E, Shen YR (1994) Phys Rev Lett 72:238CrossRefGoogle Scholar
  24. 24.
    Du Q, Freysz E, Shen YR (1994) Science 264:826CrossRefGoogle Scholar
  25. 25.
    Fenter P, Sturchio NC (2004) Prog Surf Sci 77:171CrossRefGoogle Scholar
  26. 26.
    Fry RA, Tsomaia N, Pantano CG, Mueller KTJ (2003) Am Chem Soc 125:2378CrossRefGoogle Scholar
  27. 27.
    Fubini B, Zanetti G, Altilia S, Tiozzo R, Lison D, Saffiotti U (1999) Chem Res Toxicol 12:737CrossRefGoogle Scholar
  28. 28.
    Gratz AJ, Bird P (1993) Geochim Cosmochim Acta 57:965CrossRefGoogle Scholar
  29. 29.
    Ji N, Ostroverkhov V, Chen CY, Shen YR (2007) J Am Chem Soc 129:10056CrossRefGoogle Scholar
  30. 30.
    Kinney DR, Chaung I-S, Maciel GEJ (1993) Am Chem Soc 115:6786CrossRefGoogle Scholar
  31. 31.
    Luttge A, Bolton EW, Lasaga AC (1999) Am J Sci 299:652CrossRefGoogle Scholar
  32. 32.
    McGuire JA, Shen YR (2006) Science 313:1945CrossRefGoogle Scholar
  33. 33.
    Oelkers EH, Schott J (2001) Geochim Cosmochim Acta 65:1219CrossRefGoogle Scholar
  34. 34.
    Ostroverkhov V, Waychunas GA, Shen YR (2005) Phys Rev Lett 94:046102CrossRefGoogle Scholar
  35. 35.
    Rimstidt JD (1997) Geochim Cosmochim Acta 61:2553CrossRefGoogle Scholar
  36. 36.
    Rimstidt JD, Barnes HL (1980) Geochim Cosmochim Acta 44:1683CrossRefGoogle Scholar
  37. 37.
    Schwartzentruber J, Furst W, Renon H (1987) Geochim Cosmochim Acta 51:1867CrossRefGoogle Scholar
  38. 38.
    Martin G, Garofalini SHJ (1994) Phys Chem 98:1311CrossRefGoogle Scholar
  39. 39.
    VigneMaeder F, Sautet P (1997) J Phys Chem B 101:8197CrossRefGoogle Scholar
  40. 40.
    de Leeuw NH, Higgins FM, Parker SC (1999) J Phys Chem B 103:1270CrossRefGoogle Scholar
  41. 41.
    Pelmenschikov A, Strandh H, Pettersson LGM, Leszczynski J (2000) J Phys Chem B 104:5779CrossRefGoogle Scholar
  42. 42.
    Lasaga AC, Luttge A (2004) Am Mineral 89:527Google Scholar
  43. 43.
    Lu ZY, Sun ZY, Li ZS, An LJ (2005) J Phys Chem B 109:5678CrossRefGoogle Scholar
  44. 44.
    Yang JJ, Meng S, Xu LF, Wang EG (2005) Phys Rev B 71:23Google Scholar
  45. 45.
    Bandstra JZ, Brantley SL (2008) Geochim Cosmochim Acta 72:2587CrossRefGoogle Scholar
  46. 46.
    Bickmore BR, Wheeler JC, Bates B, Nagy KL, Eggett DL (2008) Geochim Cosmochim Acta 72:4521CrossRefGoogle Scholar
  47. 47.
    Nangia S, Garrison BJ (2008) J Phys Chem A 112:2027CrossRefGoogle Scholar
  48. 48.
    Nangia S, Garrison BJ (2009) Mol PhysGoogle Scholar
  49. 49.
    Nangia S, Garrison BJ (2009) J Am Chem Soc 131:9538CrossRefGoogle Scholar
  50. 50.
    Nangia S, Washton NM, Mueller KT, Kubicki JD, Garrison BJJ (2007) Phys Chem C 111:5169CrossRefGoogle Scholar
  51. 51.
    Xiao Y, Lasaga AC (1996) Geochim Cosmochim Acta 60:2283CrossRefGoogle Scholar
  52. 52.
    Xiao Y, Lasaga AC (1994) Geochim Cosmochim Acta 58:5379CrossRefGoogle Scholar
  53. 53.
    Kubicki JD, Xiao Y, Lasaga AC (1993) Geochim Cosmochim Acta 57:3847CrossRefGoogle Scholar
  54. 54.
    Lasaga AC, Gibbs GV (1990) Am J Sci 290:263CrossRefGoogle Scholar
  55. 55.
    Yang J, Wang EG (2006) Phys Rev B 73:035406CrossRefGoogle Scholar
  56. 56.
    Zhang Y, Li ZH, Truhlar DG (2007) J Chem Theory Comput 3:593CrossRefGoogle Scholar
  57. 57.
    Criscenti LJ, Kubicki JD, Brantley SL (2006) J Phys Chem A 110:198CrossRefGoogle Scholar
  58. 58.
    Feuston BP, Garofalini SHJ (1990) Phys Chem 94:5351CrossRefGoogle Scholar
  59. 59.
    Feuston BP, Garofalini SHJ (1988) Chem Phys 89:5818Google Scholar
  60. 60.
    Feuston BP, Garofalini SH (1990) J Appl Phys 68:4830CrossRefGoogle Scholar
  61. 61.
    Feuston BP, Garofalini SH (1990) Chem Phys Lett 170:264CrossRefGoogle Scholar
  62. 62.
    Blonski S, Garofalini SH (1993) Surf Sci 295:263CrossRefGoogle Scholar
  63. 63.
    Garofalini SH, Martin GJ (1994) Phys Chem 98:1311CrossRefGoogle Scholar
  64. 64.
    Martin G, Garofalini SHJ (1994) Non-Crystalline Solids 171:68CrossRefGoogle Scholar
  65. 65.
    Litton DA, Garofalini SH (2001) J Appl Phys 89:6013CrossRefGoogle Scholar
  66. 66.
    Rao NZ, Gelb LD (2004) J Phys Chem B 108:12418CrossRefGoogle Scholar
  67. 67.
    Mahadevan TS, Garofalini SH (2008) J Phys Chem C 112:1507CrossRefGoogle Scholar
  68. 68.
    Lockwood GK, Garofalini SH (2009) J Chem Phys 131:074703CrossRefGoogle Scholar
  69. 69.
    Rustad JR, Hay BP (1995) Geochem Cosmochim Acta 59:1251CrossRefGoogle Scholar
  70. 70.
    Du ZM, de Leeuw NH (2006) Dalton Trans 2623Google Scholar
  71. 71.
    MacKerell AD Jr, Brooks B, Brooks CL III, Nilsson L, Roux B, Won Y, Karplus M (1998) CHARMM: the energy function and its parameterization with an overview of the program, vol 1. Wiley, ChichesterGoogle Scholar
  72. 72.
    Lopes PEM, Murashov V, Tazi M, Demchuk E, MacKerell AD (2006) J Phys Chem B 110:2782CrossRefGoogle Scholar
  73. 73.
    Lasaga AC, Luttge A (2005) J Phys Chem B 109:1635CrossRefGoogle Scholar
  74. 74.
    Vinson MD, Luttge A (2005) Am J Sci 305:119CrossRefGoogle Scholar
  75. 75.
    Yanina SV, Russo KM, Meakin P (2006) Geochem Cosmochim Acta 70:1113CrossRefGoogle Scholar
  76. 76.
    Zhang L, Luttge A (2008) J Phys Chem B 112:1736CrossRefGoogle Scholar
  77. 77.
    Smith WR, Triska B (1994) J Chem Phys 100:3019CrossRefGoogle Scholar
  78. 78.
    Johnson K, Panagiotopoulos AZ, Gubbins KE (1994) Mol Phys 81:717CrossRefGoogle Scholar
  79. 79.
    Siepmann JI, Frenkel D (1992) Mol Phys 75:59CrossRefGoogle Scholar
  80. 80.
    Siepmann JI, McDonald IR (1993) Phys Rev Lett 70:453CrossRefGoogle Scholar
  81. 81.
    Jakobtorweihen S, Hansen N, Keil FJJ (2006) Chem Phys 125:224709Google Scholar
  82. 82.
    Rosenbluth MN, Rosenbluth AW (1955) J Chem Phys 23:356CrossRefGoogle Scholar
  83. 83.
    Yang J, Meng S, Xu LF, Wang EG (2004) Phys Rev Lett 92:146102CrossRefGoogle Scholar
  84. 84.
    Léonardelli S, Facchini L, Fretigny C, Tougne P, Legrand APJ (1992) Am Chem Soc 114:6412CrossRefGoogle Scholar
  85. 85.
    Tuel A, Hommel H, Legrand A (1990) Langmuir 6:770CrossRefGoogle Scholar
  86. 86.
    Sindrof DW, Maciel GEJ (1983) Am Chem Soc 105:1487CrossRefGoogle Scholar
  87. 87.
    Schlegel ML, Nagy KL, Fenter P, Sturchio NC (2002) Geochem Cosmochim Acta 66:3037CrossRefGoogle Scholar
  88. 88.
    Dove PM (1994) Am J Sci 294:665CrossRefGoogle Scholar
  89. 89.
    Gillespie DT (1976) J Comput Phys 22:403CrossRefGoogle Scholar
  90. 90.
    Dooling DJ, Broadbelt LJ (2001) Ind Eng Chem Res 40:522CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of ChemistryThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations