Theoretical Chemistry Accounts

, Volume 127, Issue 4, pp 259–270 | Cite as

Hydrogen physisorption in metal–organic frameworks: concepts and quantum chemical calculations

  • German Sastre
Feature Article


Storage of hydrogen by physisorption in metal–organic frameworks is reviewed from the perspective of quantum chemistry. Concepts regarding the interaction of hydrogen with metals are revised and the specific features of metal–organic frameworks are explained. The influence of the type of inorganic cluster and hydrogen loading and its relation to hydrogen storage are analysed. Heats of hydrogen adsorption in previous studies are critically discussed and estimations are made regarding the adsorption strength needed for storage applications and how to approach commercial targets.


MOF Hydrogen Storage 



The author thanks Ministerio de Ciencia e Innovacion of Spain for funding through project MAT2007-64682.

Supplementary material

214_2010_766_MOESM1_ESM.pdf (508 kb)
Supplementary material 1 (PDF 507 kb)


  1. 1.
    Kitagawa S, Uemura K (2005) Dynamic porous properties of coordination polymers inspired by hydrogen bonds. Chem Soc Rev 34:109–119CrossRefGoogle Scholar
  2. 2.
    Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J (2003) Reticular synthesis and the design of new materials. Nature 423:705–714CrossRefGoogle Scholar
  3. 3.
    Rosseinsky MJ (2004) Recent developments in metal-organic framework chemistry: design, discovery, permanent porosity and flexibility. Micropor Mesopor Mater 73:15–30CrossRefGoogle Scholar
  4. 4.
    Férey G (2008) Hybrid porous solids: past, present, future. Chem Soc Rev 37:191–214CrossRefGoogle Scholar
  5. 5.
    van den Berg AWC, Otero-Areán C (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 668–681Google Scholar
  6. 6.
    Lin X, Jia J, Hubberstey P, Schröder M, Champness NR (2007) Hydrogen storage in metal-organic frameworks. Cryst Eng Comm 9:438–448Google Scholar
  7. 7.
    Zhao D, Yuan D, Zhou H-C (2008) The current status of hydrogen storage in metal-organic frameworks. Energy Environ Sci 1:222–235CrossRefGoogle Scholar
  8. 8.
    Rowsell JLC, Yaghi OM (2005) Strategies for hydrogen storage in metal-organic frameworks. Angew Chem Int Ed 44:4670–4679CrossRefGoogle Scholar
  9. 9.
    Keskin S, Liu J, Rankim RB, Johnson JK, Sholl DS (2009) Progress, opportunities, and challenges for applying atomically detailed modelling to molecular adsorption and transport in metal-organic framework material. Ind Eng Chem Res 48:2355–2371CrossRefGoogle Scholar
  10. 10.
    Düren T, Bae Y-S, Snurr RQ (2009) Using molecular simulated to characterise metal-organic frameworks for adsorption applications. Chem Soc Rev 38:1237–1247CrossRefGoogle Scholar
  11. 11.
    Diep P, Johnson JK (2000) An accurate H2–H2 interaction potential from first principles. J Chem Phys 112:4465–4473CrossRefGoogle Scholar
  12. 12.
    Gagliardi L, Pyykko P (2004) How many hydrogen atoms can be bound to a metal? Predicted MH12 species. J Am Chem Soc 126:15014–15015CrossRefGoogle Scholar
  13. 13.
    Chandrakumar KRS, Ghosh SK (2007) Electrostatics driven interaction of dihydrogen with s-block metal cations: theoretical prediction of stable MH16 complex. Chem Phys Lett 447:208–214CrossRefGoogle Scholar
  14. 14.
    Kiran B, Kandalam AK, Jena P (2006) Hydrogen storage and the 18-electron rule. J Chem Phys 124:224703 (-1, -6)CrossRefGoogle Scholar
  15. 15.
    Eley DD (1949) Mechanisms of hydrogen catalysis. Q Rev 3:209–225 (continued as Chem Soc Rev)Google Scholar
  16. 16.
    Kubas GJ (2007) Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. Chem Rev 107:4152–4205CrossRefGoogle Scholar
  17. 17.
    Lochan RC, Head-Gordon M (2006) Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. Phys Chem Chem Phys 8:1357–1370CrossRefGoogle Scholar
  18. 18.
    Rowsell JLC, Millward AR, Park KS, Yaghi OM (2004) Hydrogen sorption in functionalized metal-organic frameworks. J Am Chem Soc 126:5666–5667CrossRefGoogle Scholar
  19. 19.
    Ma SQ, Zhou H-C (2006) A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. J Am Chem Soc 128:11734–11735CrossRefGoogle Scholar
  20. 20.
    Eddaoudi M, Moler DB, Li H, Chen B, Reineke TM, O’Keeffe M, Yaghi OM (2001) Modular chemistry: secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks. Acc Chem Res 34:319–330CrossRefGoogle Scholar
  21. 21.
    O’Keeffe M, Peskov MA, Ramsden SJ, Yaghi OM (2008) The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc Chem Res 41:1782–1789CrossRefGoogle Scholar
  22. 22.
    Tranchemontagne DJ, Mendoza-Cortés JL, O’Keeffe M, Yaghi OM (2009) Secondary building units, nets and bonding in the chemistry of metal-organic-frameworks. Chem Soc Rev 38:1257–1283CrossRefGoogle Scholar
  23. 23.
    Chae HK, Siberio-Pérez DY, Kim J, Go Y, Eddaoudi M, Matzger AJ, O’Keeffe M, Yaghi OM (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 427:523–527CrossRefGoogle Scholar
  24. 24.
    Sastre G, Corma A (2009) The confinement effect in zeolites. J Mol Catal A 305:3–7CrossRefGoogle Scholar
  25. 25.
    Garberoglio G, Skoulidas AI, Johnson JK (2005) Adsorption of gases in metal organic materials: comparison of simulations and experiments. J Phys Chem B 109:13094–13103CrossRefGoogle Scholar
  26. 26.
    Darkrim F, Levesque D (1998) Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. J Chem Phys 109:4981–4984CrossRefGoogle Scholar
  27. 27.
    Frost H, Düren T, Snurr RQ (2006) Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. J Phys Chem B 110:9565–9570CrossRefGoogle Scholar
  28. 28.
    Frost H, Snurr RQ (2007) Design requirements for metal-organic frameworks as hydrogen storage materials. J Phys Chem C 111:18794–18803CrossRefGoogle Scholar
  29. 29.
    Yildirim T, Hartman (2005) Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. Phys Rev Lett 95:215504 (-1,-4)CrossRefGoogle Scholar
  30. 30.
    Rowsell JLC, Yaghi OM (2006) Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. J Am Chem Soc 128:1304–1315CrossRefGoogle Scholar
  31. 31.
    Sagara T, Klassen J, Ortony J, Ganz E (2005) Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. J Chem Phys 123:014701 (-1,-4)CrossRefGoogle Scholar
  32. 32.
    Sagara T, Klassen J, Ganz E (2004) Computational study of hydrogen binding by metal-organic framework-5. J Chem Phys 121:12543–12547CrossRefGoogle Scholar
  33. 33.
    Samanta A, Furuta T, Li J (2006) Theoretical assessment of the elastic constants and hydrogen storage capacity of some metal-organic framework materials. J Chem Phys 125:084714 (-1,-8)CrossRefGoogle Scholar
  34. 34.
    Mulder FM, Dingemans TJ, Wagemaker M, Kearley GJ (2005) Modelling of hydrogen adsorption in the metal organic framework MOF5. Chem Phys 317:113–118CrossRefGoogle Scholar
  35. 35.
    Bordiga S, Vitillo JG, Ricchiardi G, Regli L, Cocina D, Zecchina A, Arstad B, Bjørgen M, Hafizovic J, Lillerud KP (2005) Interaction of hydrogen with MOF-5. J Phys Chem B 109:18237–18242CrossRefGoogle Scholar
  36. 36.
    Barbosa LAMM, Zhidomirov GM, van Santen RA (2001) Theoretical study of the molecular hydrogen adsorption and dissociation on different Zn(II) active sites of zeolites. Catal Lett 77:55–62CrossRefGoogle Scholar
  37. 37.
    Negri F, Saendig N (2007) Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials. Theor Chem Acc 118:149–163CrossRefGoogle Scholar
  38. 38.
    Klontzas E, Mavrandonakis A, Froudakis GE, Carissan Y, Klopper W (2007) Molecular hydrogen interaction with IRMOF-1: a multiscale theoretical study. J Phys Chem C 111:13635–13640CrossRefGoogle Scholar
  39. 39.
    Rowsell JLC, Eckert J, Yaghi OM (2005) Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. J Am Chem Soc 127:14904–14910CrossRefGoogle Scholar
  40. 40.
    Kuc A, Heine T, Seifert G, Duarte HA (2008) On the nature of the interaction between H2 and metal-organic frameworks. Theor Chem Acc 120:543–550CrossRefGoogle Scholar
  41. 41.
    Gomez D, Combariza AF, Sastre G (2009) Quantum-chemistry calculations of hydrogen adsorption in MOF-5. Phys Chem Chem Phys 11:9250–9258CrossRefGoogle Scholar
  42. 42.
    Hirscher M, Panella B (2007) Hydrogen storage in metal-organic frameworks. Scripta Mater 56:809–812CrossRefGoogle Scholar
  43. 43.
    Dailly A, Vajo JJ, Ahn CC (2006) Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphtalenedicarboxylate. J Phys Chem B 110:1099–1101CrossRefGoogle Scholar
  44. 44.
    Sillar K, Hofmann A, Sauer J (2009) Ab initio study of hydrogen adsorption in MOF-5. J Am Chem Soc 131:4143–4150CrossRefGoogle Scholar
  45. 45.
    Fu J, Sun H (2009) An ab initio force field for predicting hydrogen storage in IRMOF materials. J Phys Chem C 113:21815–21824CrossRefGoogle Scholar
  46. 46.
    Han SS, Goddard WA (2007) Lithium-doped metal-organic frameworks for reversible H2 storage at ambient temperature. J Am Chem Soc 129:8422–8423CrossRefGoogle Scholar
  47. 47.
    Wong M, Van Kuiken BE, Buda C, Dunietz BD (2009) Multiadsorption and coadsorption of hydrogen on model conjugated systems. J Phys Chem C 113:12571–12579CrossRefGoogle Scholar
  48. 48.
    Buda C, Dunietz BD (2006) Hydrogen physisorption on the organic linker in metal organic frameworks: ab initio computational study. J Phys Chem B 110:10479–10484CrossRefGoogle Scholar
  49. 49.
    Dincă M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. J Am Chem Soc 128:16876–16883CrossRefGoogle Scholar
  50. 50.
    Sun YY, Kim Y-H, Zhang SB (2007) Effect of spin state on the dihydrogen binding strength to transition metal centers in metal-organic frameworks. J Am Chem Soc 129:12606–12607CrossRefGoogle Scholar
  51. 51.
    Zhou W, Yildirim T (2008) Nature and tunability of enhanced hydrogen binding in metal-organic frameworks with exposed transition metal sites. J Phys Chem C 112:8132–8135CrossRefGoogle Scholar
  52. 52.
    Kosa M, Krack M, Cheetham AK, Parrinello M (2008) Modelling the hydrogen storage materials with exposed M2+ coordination sites. J Phys Chem C 112:16171–16173CrossRefGoogle Scholar
  53. 53.
    Dietzel PDC, Panella B, Hirscher M, Blom R, Fjellvag H (2006) Hydrogen adsorption in a nickel based coordination polymer with open metal sites in the cylindrical cavities of the desolvated framework. Chem Commun 959–961Google Scholar
  54. 54.
    Zhou W, Wu H, Yildirim T (2008) Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. J Am Chem Soc 130:15268–15269CrossRefGoogle Scholar
  55. 55.
    Vitillo JG, Regli L, Chavan S, Ricchiardi G, Spoto G, Dietzel PDC, Bordiga S, Zecchina A (2008) Role of exposed metal sites in hydrogen storage in MOFs. J Am Chem Soc 130:8386–8396CrossRefGoogle Scholar
  56. 56.
    Wong-Foy AG, Matzger AJ, Yaghi OM (2006) Exceptional H2 saturation uptake in microporous metal-organic frameworks. J Am Chem Soc 128:3494–3495CrossRefGoogle Scholar
  57. 57.
    Liu Y, Kabbour H, Brown CM, Neumann DA, Ahn CC (2008) Increasing the density of adsorbed hydrogen with coordinatively unsaturated metal centers in metal-organic frameworks. Langmuir 24:4772–4777CrossRefGoogle Scholar
  58. 58.
    Kong L, Roman-Perez G, Soler JM, Langreth DC (2009) Energetics and dynamics of H2 adsorbed in a nanoporous material at low temperature. Phys Rev Lett 103:096103 (-1,-4)CrossRefGoogle Scholar
  59. 59.
    Brown CM, Lin Y, Yildirim T, Peterson VK, Kepert CJ (2009) Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study. Nanotechnology 20:204025 (-1,-11)CrossRefGoogle Scholar
  60. 60.
    Jhi S-H (2007) A theoretical study of activated nanostructured materials for hydrogen storage. Catal Today 120:383–388CrossRefGoogle Scholar
  61. 61.
    Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Instituto de Tecnologia Quimica U.P.V.-C.S.I.C.Universidad Politecnica de ValenciaValenciaSpain

Personalised recommendations