Theoretical Chemistry Accounts

, Volume 127, Issue 5–6, pp 595–603

Theoretical study on the chemical fate of adducts formed through free radical addition reactions to carotenoids

Regular Article

Abstract

It is well known that free radicals are responsible for oxidative stress and cause numerous health disorders. As a result, the study of molecules that can scavenge free radicals is significant. One of the most important classes of free radical scavengers are carotenoids (CAR). In this work, the effectiveness of the CAR in terms of the radical adduct formation (RAF) reaction is studied using density functional theory calculations (in polar and non-polar environments). The reactions between four CAR [β-carotene (BC), zeaxanthin (ZEA), canthaxanthin (CANTA) and astaxanthin (ASTA)] with eight different radicals (OH, OOH, CH3, O–CH3, OO–CH3, SH, O–CH2–CH=CH2, and OO–CH2–CH=CH2), as well as substantial further reactions involved in the radical chain propagation, are analyzed. According to our results, the RAF reactions are controlled to a larger extent by the nature of the free radical than by the particular CAR they are reacting with. Thermochemistry calculations predict that each CAR molecule is able to scavenge at least two free radicals, which would lead to the termination of the radical chain process. Epoxy and diepoxy CAR species can be formed, being epoxy molecules as good free radical scavengers as their parent CAR. ASTA and CANTA are predicted to be less reactive, when reacting through RAF mechanism, than BC and ZEA.

Keywords

Carotenoids Radical reactions Computational chemistry Antioxidants Thermochemistry 

References

  1. 1.
    Boyd NF, McGuire V (1991) Free Rad Biol Med 10:185CrossRefGoogle Scholar
  2. 2.
    Nelson RL (1992) Free Rad Biol Med 12:161CrossRefGoogle Scholar
  3. 3.
    Knekt P, Reunanen A, Takkunen H, Aromaa A, Heliovaara M, Hakuunen T (1994) Int J Cancer 56:379CrossRefGoogle Scholar
  4. 4.
    Omenn GS, Goodman GE, Thornquist MD (1996) N Engl J Med 334:1150CrossRefGoogle Scholar
  5. 5.
    Riemmersma RA, Wood DA, Macityre CCA, Elton RA, Gey KF, Oliver MF (1991) Lancet 337:1CrossRefGoogle Scholar
  6. 6.
    Salonen JT, Nyyssoner K, Korpela H, Tuomilehto J, Seppanen R, Salonen R (1992) Circulation 86:803Google Scholar
  7. 7.
    Street DA, Comstock G, Salkeldy R, Klag M (1994) Circulation 90:1154Google Scholar
  8. 8.
    Kushi LH, Folsom AR, Prineas RJ, Mink PJ, Wu Y, Bostick R (1996) N Engl J Med 334:1156CrossRefGoogle Scholar
  9. 9.
    Stephens NG, Parsons A, Schofield PM, Kelly F, Cheesman K, Mitchisnon MJ, Brown MJ (1996) Lancet 347:781CrossRefGoogle Scholar
  10. 10.
    Panasenko OM, Nova TV, Azizova OA, Vladimirov YA (1991) Free Rad Biol Med 10:137CrossRefGoogle Scholar
  11. 11.
    Steinberg D (1991) Circulation 84:1421Google Scholar
  12. 12.
    Janero DR (1991) Free Rad Biol Med 11:129CrossRefGoogle Scholar
  13. 13.
    Hodis HN, Mack WJ, LaBree L, Cashin-Hemphill L, Sevanian A, Johnson R, Azen S (1995) J Am Med Assoc 273:1849CrossRefGoogle Scholar
  14. 14.
    Butterfield DA, Hensley K, Harris M, Mattson M, Carney J (1994) Biochem Biophys Res Commun 200:710CrossRefGoogle Scholar
  15. 15.
    Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) Proc Natl Acad Sci USA 91:3270CrossRefGoogle Scholar
  16. 16.
    Butterfield DA, Martin L, Carney JM, Hensley K (1996) Life Sci 58:217CrossRefGoogle Scholar
  17. 17.
    Butterfield DA (1997) Chem Res Toxicol 10:495CrossRefGoogle Scholar
  18. 18.
    Fay DS, Fluet A, Johnson CJ, Link CD (1998) J Neurochem 71:1616CrossRefGoogle Scholar
  19. 19.
    Krinsky NI (1993) Annu Rev Nutr 13:561CrossRefGoogle Scholar
  20. 20.
    Edge R, McGarvey DJ, Truscott TG (1997) J Photochem Photobiol 41:189CrossRefGoogle Scholar
  21. 21.
    Burton GW, Ingold KU (1984) Science 224:569CrossRefGoogle Scholar
  22. 22.
    Everett SA, Dennis MF, Patel KB, Maddix S, Kundu SC, Willson RL (1996) J Biol Chem 271:3988CrossRefGoogle Scholar
  23. 23.
    Woodall AA, Britton G, Jackson M (1997) J Biochim Biophys Acta 1336:575Google Scholar
  24. 24.
    Martínez A, Vargas R, Galano A (2009) J Phys Chem B 113:12113CrossRefGoogle Scholar
  25. 25.
    Martínez A, Rodríguez-Gironés MA, Barbosa A, Costas M (2008) J Phys Chem A 112:9037CrossRefGoogle Scholar
  26. 26.
    Martínez A (2009) J Phys Chem B 113:3212CrossRefGoogle Scholar
  27. 27.
    Martínez A (2009) J Phys Chem B 113:4915CrossRefGoogle Scholar
  28. 28.
    Galano A, Alvarez-Diduk R, Ramirez-Silva MT, Alarcon-Angeles G, Rojas-Hernández A (2009) Chem Phys 363:13CrossRefGoogle Scholar
  29. 29.
    Galano A, Vargas R, Martínez A (2010) Phys Chem Chem Phys 12:193CrossRefGoogle Scholar
  30. 30.
    Galano A (2007) J Phys Chem B 111:12898CrossRefGoogle Scholar
  31. 31.
    Galano A, Francisco-Márquez M (2009) J Phys Chem B 113:11338CrossRefGoogle Scholar
  32. 32.
    Martínez A, Barbosa A (2008) J Phys Chem B 112:16945CrossRefGoogle Scholar
  33. 33.
    Liebler DC, McClure TD (1996) Chem Res Toxicol 9:8CrossRefGoogle Scholar
  34. 34.
    Mortensen A (2002) Free Rad Res 36:211CrossRefGoogle Scholar
  35. 35.
    El-Tinay AH, Chichester CO (1970) J Org Chem 35:2290CrossRefGoogle Scholar
  36. 36.
    Mordi RC, Walton JC, Burton GW, Hughes L, Ingold KU, Lindsay DA (1991) Tetrahedron Lett 32:4203CrossRefGoogle Scholar
  37. 37.
    Hoshino M, Konishi R, Seto H, Seki H, Sonoki H, Yokoyama T, Shimamori H (2001) Res Chem Intermed 27:189CrossRefGoogle Scholar
  38. 38.
    Sawaki Y, Ogata Y (1984) J Org Chem 49:3344CrossRefGoogle Scholar
  39. 39.
    Gaussian 03, Revision D.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, NakatsujiH,HadaM,Ehara M,ToyotaK, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian Inc., WallingfordGoogle Scholar
  40. 40.
    Dunning TH, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 3. Plenum, New York, pp 1–28Google Scholar
  41. 41.
    Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032CrossRefGoogle Scholar
  42. 42.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151CrossRefGoogle Scholar
  43. 43.
    Mennucci B, Cances E, Tomasi J (1997) J Phys Chem B 101:10506CrossRefGoogle Scholar
  44. 44.
    Tomasi J, Mennucci B, Cances E (1999) J Mol Struct 464:211Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ana Martínez
    • 1
  • Rubicelia Vargas
    • 1
    • 2
  • Annia Galano
    • 2
  1. 1.Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de MéxicoMexico DFMexico
  2. 2.Departamento de Química, División de Ciencias Básicas e IngenieríaUniversidad Autónoma Metropolitana-IztapalapaMexico DFMexico

Personalised recommendations