Theoretical Chemistry Accounts

, Volume 127, Issue 1–2, pp 39–47 | Cite as

Solvolysis process of organophosphorus compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic fluoride with simple and α-nucleophiles: a DFT study

  • Manoj K. Kesharwani
  • Md. Abdul Shafeeuulla Khan
  • Tusar Bandyopadhyay
  • Bishwajit Ganguly
Regular Article

Abstract

Density functional theory (DFT) has been used to study the solvolysis process of the organophosphorus compound P-[2-(dimethylamino)ethyl]-N,N-dimethylphosphonamidic fluoride (GV) with simple nucleophile [hydroxide (HO)] and α-nucleophiles [hydroperoxide (HOO) and hydroxylamine anion (NH2O)]. The lowest energy conformer of GV used for the solvolysis process was identified with Monte Carlo conformational search (MCMM) algorithm employing MMFFs force field followed by DFT calculations. The profound effect was found for α-nucleophiles toward the solvolysis of GV compared to normal alkaline hydrolysis. Incorporation of solvent (water) employing SCRF (PCM) model at B3LYP/6-31+G* showed that solvolysis of GV with hydroperoxide (activation energy = 7.6 kcal/mol) is kinetically more favored compared to hydroxide and hydroxylamine anion (activation energy = 11.0 and 9.2 kcal/mol, respectively). The faster solvolysis of GV with hydroperoxide is achieved due to strong intermolecular hydrogen bonding in the transition state geometry compared to similar α-nucleophile hydroxylamine anion. Assistance of a water molecule in solvolysis of GV affects the activation barriers; however, the hydroperoxidolysis remains the preferential process. The topological properties of electron density distributions for (–X–H···O, X = O, N) intermolecular hydrogen bonding bridges have been analyzed in terms of Bader theory of atoms in molecules (AIM). Further, the analysis was extended by natural bond orbital (NBO) methods for the strength of intermolecular hydrogen bonding in the transition state geometries. This study showed that the reactivity of these α-nucleophiles toward the solvolysis of GV is a delicate balance between the nucleophilicity and hydrogen-bond strength. Solvation governs the overall thermodynamics for the destruction of GV, which otherwise is unfavored in the gas phase studies.

Keywords

Solvolysis Ab initio calculations α-Nucleophiles Nerve agent Hydroxylamine anion 

Supplementary material

214_2009_701_MOESM1_ESM.doc (700 kb)
Supplementary material 1 (DOC 700 kb)

References

  1. 1.
    Bunton CA (1997) Chemical warfare. In: Lagowsky JJ (ed) Macmillan encyclopedia of chemistry. Macmillan Reference USA, vol 1. Simon and Schuster Macmillan, New York, pp 343–346Google Scholar
  2. 2.
    DeFrank JJ (1991) Organophosphorus cholinesterase inhibitors: detoxification by microbial enzymes. In: Kelly JW, Baldwin TO (eds) Applications of enzyme biotechnolgy. Plenum Press, New York, pp 165–180Google Scholar
  3. 3.
    Heilbronn-Wikstrom E (1965) Sven Kem Tidskr 77:598–631Google Scholar
  4. 4.
    Kolb HC, Sharpless KB (2003) Drug Discov Today 8:1128–1137CrossRefGoogle Scholar
  5. 5.
    Quinn DM (1987) Chem Rev 87:955–979CrossRefGoogle Scholar
  6. 6.
    Shafferman A, Kronman C, Flashner Y, Leitner M, Grosfeld H, Ordentlich A, Gozes Y, Cohen S, Ariel N, Barak D, Harel M, Silman I, Sussman JL, Velan B (1992) J Biol Chem 267:17640–17648Google Scholar
  7. 7.
    Wang J, Roszak S, Gu J, Leszczynski J (2005) J Phys Chem B 109:1006–1014CrossRefGoogle Scholar
  8. 8.
    Wang J, Gu J, Leszczynski J (2006) J Phys Chem B 110:7567–7573CrossRefGoogle Scholar
  9. 9.
    Taylor P, Lappi S (1975) Biochemistry 14:1989–1997CrossRefGoogle Scholar
  10. 10.
    Kumar VP, Ganguly B, Bhattacharya S (2004) J Org Chem 69:8634–8642CrossRefGoogle Scholar
  11. 11.
    Gershonov E, Columbus I, Zafrani Y (2009) J Org Chem 74:329–338CrossRefGoogle Scholar
  12. 12.
    Yang YC, Szafraniec LL, Beaudry WT, Rohrbaugh DK (1990) J Am Chem Soc 112:6621–6627CrossRefGoogle Scholar
  13. 13.
    Simanenko YS, Savelova VA, Prokop’eva TM, Mikhailov VA, Turovskaya MK, Karpichev EA, Popov AF, Gillitt ND, Bunton CA (2004) J Org Chem 69:9238–9240CrossRefGoogle Scholar
  14. 14.
    Vorontsov AV, Davydov L, Reddy EP, Lion C, Savinov EN, Smirniotis PG (2002) New J Chem 26:732–744CrossRefGoogle Scholar
  15. 15.
    Vorontsov AV, Chen YC, Smirniotis PG (2004) J Hazard Mat B113:89–95CrossRefGoogle Scholar
  16. 16.
    Michalkova A, Gorb L, IIchenko GM, Zhikol OA, Shishkin OV, Leszczynski J (2004) J Phys Chem B 108:1918–1930CrossRefGoogle Scholar
  17. 17.
    Keizer TS, Pue De LJ, Parkin S, Atwood DA (2002) J Am Chem Soc 124:1864–1865CrossRefGoogle Scholar
  18. 18.
    Hill CM, Li WS, Thoden JB, Holden HM, Raushel FM (2003) J Am Chem Soc 125:8990–8991CrossRefGoogle Scholar
  19. 19.
    Amitai G, Adani R, Hershkovitz M, Bel P, Rabinovitz I, Meshulam H (2003) J Appl Toxicol 23:225–233CrossRefGoogle Scholar
  20. 20.
    Hoskins FCG, Walker JE, Dettbarn WD, Wild JR (1995) Biochem Pharmacol 49:711–715CrossRefGoogle Scholar
  21. 21.
    Kiddle JJ, Mezyk SP (2004) J Phys Chem B 108:9568–9570CrossRefGoogle Scholar
  22. 22.
    Aguila A, O’Shea KE, Tobien T, Asmus KD (2001) J Phys Chem A 105:7834–7839CrossRefGoogle Scholar
  23. 23.
    Hoenig SL (2007) Compendium of chemical warfare agents. Springer, New York, p 100Google Scholar
  24. 24.
    Royo S, Martínez-Máñez R, Sancenón F, Costero AM, Parra M, Gil S (2007) Chem Commun 4839–4847Google Scholar
  25. 25.
    Cassagne T, Cristau HJ, Delmas G, Desgranges M, Lion C, Magnaud G, Torreilles É, Virieux D (2001) Heteroat Chem 12:485–490CrossRefGoogle Scholar
  26. 26.
    Bermudez VM (2007) J Phys Chem C 111:9314–9323CrossRefGoogle Scholar
  27. 27.
    Bandyopadhyay I, Kim MJ, Lee YS, Churchill DG (2006) J Phys Chem A 110:3655–3661CrossRefGoogle Scholar
  28. 28.
    Šečkutė J, Menke JL, Emnett RJ, Patterson EV, Cramer CJ (2005) J Org Chem 70:8649–8660CrossRefGoogle Scholar
  29. 29.
    Zheng F, Zhan CG, Ornstein RL (2001) J Chem Soc Perkin Trans 2:2355–2363Google Scholar
  30. 30.
    Patterson EV, Cramer CJ (1998) J Phys Org Chem 11:232–240CrossRefGoogle Scholar
  31. 31.
    Daniel KA, Kopff LA, Patterson EV (2008) J Phys Org Chem 21:321–328CrossRefGoogle Scholar
  32. 32.
    Menke JL, Patterson EV (2007) J Mol Struct: THEOCHEM 811:281–291CrossRefGoogle Scholar
  33. 33.
    Khan MAS, Kesharwani MK, Bandyopadhyay T, Ganguly B (2009) J Mol Graphics Modell 28:177–182CrossRefGoogle Scholar
  34. 34.
    Kassa J, Bajgar J (1996) Acta Med 39:27–30Google Scholar
  35. 35.
    Chang G, Guida WC, Still WC (1989) J Am Chem Soc 111:4379–4386CrossRefGoogle Scholar
  36. 36.
    Saunders M, Houk KN, Wu YD, Still WC, Lipton M, Chang G, Guida WC (1990) J Am Chem Soc 112:1419–1427CrossRefGoogle Scholar
  37. 37.
    Halgren TA (1996) J Comput Chem 17:616–641CrossRefGoogle Scholar
  38. 38.
    Halgren TA (1996) J Comput Chem 17:553–586CrossRefGoogle Scholar
  39. 39.
    Halgren TA (1996) J Comput Chem 17:520–552CrossRefGoogle Scholar
  40. 40.
    Halgren TA (1996) J Comput Chem 17:490–519CrossRefGoogle Scholar
  41. 41.
    Halgren TA, Nachbar RB (1996) J Comput Chem 17:587–615Google Scholar
  42. 42.
    Mohamdi F, Richards NGJ, Guida WC, Liskamp R, Lipton M, Caufield C, Chang G, Hendrickson T, Still WC (1990) J Comput Chem 11:440–467CrossRefGoogle Scholar
  43. 43.
    Polak E, Ribiere G (1969) Rev Fr Inf Rech Oper 16-R1:35–43Google Scholar
  44. 44.
    Shenkin PS, McDonald DQ (1994) J Comput Chem 15:899–916CrossRefGoogle Scholar
  45. 45.
    Hillson SD, Smith E, Zeldin M, Parish CA (2005) J Phys Chem A 109:8371–8378CrossRefGoogle Scholar
  46. 46.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  47. 47.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  48. 48.
    Beck JM, Hadad CM (2008) Chemico biological interactions 175:200–203CrossRefGoogle Scholar
  49. 49.
    Hehre WJ, Radom L, Schleyer PvR, Pople JA (1988) Ab initio molecular orbital theory. Wiley, New YorkGoogle Scholar
  50. 50.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  51. 51.
    Tomasi J, Persico M (1994) Chem Rev 94:2027–2094CrossRefGoogle Scholar
  52. 52.
    Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327–335CrossRefGoogle Scholar
  53. 53.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210–3221CrossRefGoogle Scholar
  54. 54.
    Barone V, Cossi M, Tomasi J (1998) J Comput Chem 19:404–417CrossRefGoogle Scholar
  55. 55.
    Cossi M, Barone V (1998) J Chem Phys 109:6246–6254CrossRefGoogle Scholar
  56. 56.
    Zhao Y, Lynch BJ, Truhlar DG (2004) J Phys Chem A 108:2715–2719CrossRefGoogle Scholar
  57. 57.
    Zhao Y, Lynch BJ, Truhlar DG (2005) Phys Chem Chem Phys 7:43–52CrossRefGoogle Scholar
  58. 58.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  59. 59.
    Larsson L (1957) Acta Chem Scand 11:1131–1142CrossRefGoogle Scholar
  60. 60.
    González C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  61. 61.
    González C, Schlegel HB (1991) J Chem Phys 95:5853–5860CrossRefGoogle Scholar
  62. 62.
    Bader RFW (1990) Atoms in molecule: a quantum theory. Oxford University Press, New YorkGoogle Scholar
  63. 63.
    Cioslowski J, Nanayakkara A, Challacombe M (1993) Chem Phys Lett 203:137–142CrossRefGoogle Scholar
  64. 64.
    Cioslowski J (1994) Chem Phys Lett 219:151–154CrossRefGoogle Scholar
  65. 65.
    Espinosa E, Souhassou M, Lachekar H, Lecomte C (1999) Acta Crystallogr B 55:563–572CrossRefGoogle Scholar
  66. 66.
    Glendening DE, Reed AE, Carpenter JE, Weinhold F (1992) NBO Version 3.1Google Scholar
  67. 67.
    Thatcher GRJ, Kluger R (1989) Adv Phys Org Chem 25:99CrossRefGoogle Scholar
  68. 68.
    Zhan C-G, Landry DW, Ornstein RL (2000) J Am Chem Soc 122:1522–1530CrossRefGoogle Scholar
  69. 69.
    van Bochove MA, Bickelhaupt FM (2008) Eur J Org Chem 649–654Google Scholar
  70. 70.
    van Bochove MA, Swart M, Bickelhaupt FM (2007) Chem Phys Chem 8:2452–2463Google Scholar
  71. 71.
    van Bochove MA, Swart M, Bickelhaupt FM (2006) J Am Chem Soc 128:10738–10744CrossRefGoogle Scholar
  72. 72.
    Kirby AJ, Manfredi AM, Souza BS, Medeiros M, Priebe JP, Brandão TAS, Nome F (2009) ARKIVOC. (iii):28–38Google Scholar
  73. 73.
    Kirby AJ, Souza BS, Medeiros M, Priebe JP, Manfredi AM, Nome F (2008) Chem Commun 4428-4429Google Scholar
  74. 74.
    Kirby AJ, Davies JE, Brandão TAS, da Silva PF, Rocha WR, Nome F (2006) J Am Chem Soc 128:12374–12375CrossRefGoogle Scholar
  75. 75.
    Anslyn EV, Dougherty DA (2006) Modern physical organic chemistry. University Science Books, Sausalito, p 168Google Scholar
  76. 76.
    Raissi H, Jalbout AF, Farsi H, Abbasi B, De Leon A, Moghiminia S (2009) Int J Quantum Chem 109:1609–1616CrossRefGoogle Scholar
  77. 77.
    Wiberg KB (1968) Tetrahedron 24:1083–1096CrossRefGoogle Scholar
  78. 78.
    Popelier PLA, Bader RFW (1992) Chem Phys Lett 189:542–548CrossRefGoogle Scholar
  79. 79.
    Nowroozi A, Jalbout AF, Roohi H, Khalilinia E, Sadeghi M, De Leon A, Raissi H (2009) Int J Quantum Chem 109:1505–1514CrossRefGoogle Scholar
  80. 80.
    Howard ST (2000) J Am Chem Soc 122:8238–8244CrossRefGoogle Scholar
  81. 81.
    Simanenko YS, Popov AF, Prokop’eva TM, Savelova VA, Belousova IA (1994) Theor Exp Chem 30:61–64CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Manoj K. Kesharwani
    • 1
  • Md. Abdul Shafeeuulla Khan
    • 1
  • Tusar Bandyopadhyay
    • 2
  • Bishwajit Ganguly
    • 1
  1. 1.Analytical Science DisciplineCentral Salt and Marine Chemicals Research Institute (Council of Scientific and Industrial Research)BhavnagarIndia
  2. 2.Theoretical Chemistry Section, Chemistry GroupBhabha Atomic Research CentreTrombay, MumbaiIndia

Personalised recommendations