Theoretical Chemistry Accounts

, Volume 126, Issue 3–4, pp 243–255 | Cite as

Structural and optical properties of a neutral Nickel bisdithiolene complex: density functional versus ab initio methods

  • Fabienne Alary
  • Jean-Louis Heully
  • Anthony Scemama
  • Bénédicte Garreau-de Bonneval
  • Kathleen I. Chane-Ching
  • Michel Caffarel
Regular Article


Density functional theory (DFT) and ab initio computations are applied to examine different properties of diamagnetic, square planar neutral nickel complexes that contain two bidentate ligands derived from bis ((ethylene)-1,2-dithiolato) ligands. Geometry, vibrational spectra (IR and Raman) are well reproduced in the density functional framework whereas TD-DFT methods are clearly insufficient to reproduce absorption properties. Multiconfigurational perturbation theory based on a complete active space self-consistent field wave function, i.e. MRPT2 and MRPT4 methods, reveal the pronounced multiconfigurational character of the ground state wave function. The singlet–triplet energy gap, the energy gained from symmetry breaking and the singlet diradical character are discussed in the DFT and ab initio frameworks. The complex of interest does not display a strong singlet diradical character. This molecule having a peculiar electronic structure; strong delocalization as shown by a new electron pair localization function analysis (EPLF); exemplifies the fragility of the TD-DFT method and thus, caution should be taken in the determination of the energetic properties of such compounds.


Nickel bisdithiolene DFT Ab initio methods Biradical character EPLF 


  1. 1.
    Schrauzer GN, Mayweg VP (1965) J Am Chem Soc 87:3585–3592CrossRefGoogle Scholar
  2. 2.
    Bach AL, Holm RH (1966) J Am Chem Soc 88:5201–5209CrossRefGoogle Scholar
  3. 3.
    Stiefel EI, Waters JH, Billig E, Gray HB (1965) J Am Chem Soc 87:3016–3017CrossRefGoogle Scholar
  4. 4.
    Herman ZS, Kirchner RF, Loew GH, Mueller-Westerhoff UT, Nazzal A, Zerner M (1982) Inorg Chem 21:46–56CrossRefGoogle Scholar
  5. 5.
    Lim BS, Fomitchev V, Holm RH (2001) Inorg Chem 40:4257–4262CrossRefGoogle Scholar
  6. 6.
    Herebian D, Wieghardt KE, Neese F (2003) J Am Chem Soc 125:10997–11005CrossRefGoogle Scholar
  7. 7.
    Schrauzer GN (1969) Acc Chem Res 2:72–80CrossRefGoogle Scholar
  8. 8.
    Chane-Ching K, Garreau-de Bonneval B, Bui TT, Jacob KJ, Duhayon C, Alary F, Valade L (2009) Synthesis X-ray crystal structures, optical properties and modeling data of two new neutral bis(1,2-dithiolene) nickel complexes (in preparation)Google Scholar
  9. 9.
    Lauterbach C, Fabian J (1999) Eur J Inorg Chem 1995–2004Google Scholar
  10. 10.
    Wang R (2006) Internal report of Fairport High School. Fairport, NYGoogle Scholar
  11. 11.
    Scemama A, Chaquin P, Caffarel M (2004) J Chem Phys 121:1725–1735CrossRefGoogle Scholar
  12. 12.
    Scemama A, Caffarel M, Ramirez-Solis A (2009). doi: 10.1021/jp902028g
  13. 13.
    Pyykkö P (2004) Angew Chem Int Ed 43:4412–4456CrossRefGoogle Scholar
  14. 14.
    Carra C, Scaiano JC (2008) Eur J Org Chem 4454–4459Google Scholar
  15. 15.
    Neese F (2007) ORCA: an ab initio DFT and semiempirical SCF-MO package, University of Bonn, Bonn, GermanyGoogle Scholar
  16. 16.
    Schmidt M, Baldridge K, Boatz J, Elbert S, Gordon M, Jensen J, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus T, Dupuis M, Montgomery J (1993) J Comput Chem 14:1347CrossRefGoogle Scholar
  17. 17.
    Nemukhin AV, Grigorenko BL, Granovsky AA (2004) Molecular modeling by using the PC GAMESS program: from diatomic molecules to enzymes. Moscow Univ Chem Bull 45:75Google Scholar
  18. 18.
    Becke AD (1988) Phys Rev A 38:3098–3100CrossRefGoogle Scholar
  19. 19.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  20. 20.
    Handy NC, Cohen AJ (2001) Mol Phys 99:403–412CrossRefGoogle Scholar
  21. 21.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Phys Rev B 46:6671–6687CrossRefGoogle Scholar
  22. 22.
    Zhao Y, Truhlar DG (2006) J Chem Phys 125:194101(1)–194101(18)Google Scholar
  23. 23.
    Tao J, Perdew J, Staroverov V, Scuseria G (2003) Phys Rev Lett 91:1–146401CrossRefGoogle Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868CrossRefGoogle Scholar
  25. 25.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  26. 26.
    Hammer B, Hansen LB, Nørskov J (1999) Phys Rev B 58:7413–7421CrossRefGoogle Scholar
  27. 27.
    Grimme S (2006) J Chem Phys 124:034108CrossRefGoogle Scholar
  28. 28.
    Adamo C, Barone V (1999) J Chem Phys 110:6158–6170CrossRefGoogle Scholar
  29. 29.
    Zhao Y, Schultz NE, Truhlar DG (2006) J Chem Theory Comput 2:364–382CrossRefGoogle Scholar
  30. 30.
    Staroverov V, Scuseria G, Tao J, Perdew J (2003) J Chem Phys 119:12129–12137CrossRefGoogle Scholar
  31. 31.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  32. 32.
    Eichkorn K, Treutler O, Ohm H, Haser M, Ahlrichs R (1995) Chem Phys Lett 240:283–289CrossRefGoogle Scholar
  33. 33.
    Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997) Theor Chem Acc 97:119–124Google Scholar
  34. 34.
    Dolg M, Stoll H, Preuss H, Pitzer RM (1993) J Phys Chem 9:5852–5859CrossRefGoogle Scholar
  35. 35.
    Van Wüllen C (1998) J Chem Phys 109:392–399CrossRefGoogle Scholar
  36. 36.
    Polavarapu PL (1990) J Phys Chem 94:8106–8112CrossRefGoogle Scholar
  37. 37.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  38. 38.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397CrossRefGoogle Scholar
  39. 39.
    Stewart JJP (2007) J Mol Model 13:1173–1213CrossRefGoogle Scholar
  40. 40.
    Tsuneda T, Hirao K (1997) Chem Phys Lett 268:510–520CrossRefGoogle Scholar
  41. 41.
    Romaniello P, Aragoni MC, Arca M, Cassano T, Denotti C, Devillanova FA, Isaia F, Lelj F, Lippolois V, Tommasi R (2003) J Phys Chem A 107:9679–9687CrossRefGoogle Scholar
  42. 42.
    Bachler V, Olbrich G, Neese FK, Wieghardt KE (2002) Inorg Chem 41:4179–4193CrossRefGoogle Scholar
  43. 43.
    Schläpfer CW, Nakamoto K (1975) Inorg Chem 14:1338–1344CrossRefGoogle Scholar
  44. 44.
    Adams DM, Cornell JB, (1968) J Chem Soc A 1299–1303Google Scholar
  45. 45.
    Siimamann O, Fresco J (1971) Inorg Chem 10:297–302CrossRefGoogle Scholar
  46. 46.
    Pokhodnya KI, Faulmann C, Malfant I, Andreu-Solano R, Cassoux P, Mlayah A, Smirno D, Leotin J (1999) Synt Met 103:2016–2019CrossRefGoogle Scholar
  47. 47.
    Noodleman L (1981) J Chem Phys 74:5737–5743CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Fabienne Alary
    • 1
  • Jean-Louis Heully
    • 1
  • Anthony Scemama
    • 1
  • Bénédicte Garreau-de Bonneval
    • 2
  • Kathleen I. Chane-Ching
    • 2
  • Michel Caffarel
    • 1
  1. 1.LCPQ-UMR 5626-IRSAMC-118Toulouse Cedex 07France
  2. 2.LCC-UPR 8241-205Toulouse Cedex 04France

Personalised recommendations