Theoretical Chemistry Accounts

, Volume 126, Issue 1–2, pp 75–85 | Cite as

Counterpoise corrected interaction energies are not systematically better than uncorrected ones: comparison with CCSD(T) CBS extrapolated values

  • Juan Raul Alvarez-Idaboy
  • Annia Galano
Regular Article


The effect of the inclusion of counterpoise corrections (CP) on the accuracy of interaction energies has been studied for different systems accounting for (1) intermolecular interactions, (2) intramolecular interactions and (3) chemical reactions. To minimize the error associated with the method of choice, the energy calculations were performed using CCSD(T) in all the cases. The values obtained using aug-cc-pVXZ basis sets are compared to CBS-extrapolated values. It has been concluded that at least for the tested systems CP corrections systematically leads to results that differ from the CBS-extrapolated ones to a larger extension than the uncorrected ones. Accordingly, from a practical point of view, we do not recommend the inclusion of such corrections in the calculation of interaction energies, except for CBS extrapolations. The best way of dealing with basis set superposition error (BSSE) is not to use CP corrections, but to make a computational effort for increasing the basis set. This approach does not eliminate BSSE but significantly decreases it, and more importantly it proportionally decreases all the errors arising from the basis set truncation.


Basis set superposition error (BSSE) Counterpoise correction Weak interactions Reaction barriers 



The authors would like to thank the Dirección General de Servicios de Cómputo Académico (DGSCA) at Universidad Nacional Autónoma de México and Laboratorio de Visualización y Computo Paralelo at UAM-Iztapalapa. This work was partially supported by a grant from the DGAPA UNAM (PAPIIT-IN203808).


  1. 1.
    Liu B, Malean AD (1973) J Chem Phys 59:4557CrossRefGoogle Scholar
  2. 2.
    Kestner NR (1968) J Chem Phys 48:252CrossRefGoogle Scholar
  3. 3.
    Jansen HB, Ros P (1969) Chem Phys Lett 3:140CrossRefGoogle Scholar
  4. 4.
    Johansson A, Kollman P, Rothenberg S (1973) Theor Chim Acta 29:167CrossRefGoogle Scholar
  5. 5.
    Daudey JP, Claveriand P, Malrieu P (1974) Int J Quantum Chem 8:1CrossRefGoogle Scholar
  6. 6.
    Frisch MJ, Del Bene JE, Binkley JS, Schaefer HF III (1986) J Chem Phys 84:2279CrossRefGoogle Scholar
  7. 7.
    Schwenke DW, Truhlar DG (1985) J Chem Phys 82:2418CrossRefGoogle Scholar
  8. 8.
    Morokuma K, Kitaura K (1981) JHG. In: Politzer P (ed) Chemical application of atomic and molecular electronic potentials. Plenum, New YorkGoogle Scholar
  9. 9.
    Lopez JC, Alonso JL, Lorenzo FJ, Rayon VM, Sordo JA (1999) J Chem Phys 111:6363CrossRefGoogle Scholar
  10. 10.
    Hunt SW, Leopold KR (2001) J Phys Chem A 105:5498CrossRefGoogle Scholar
  11. 11.
    Valdés H, Sordo JA (2002) J Comput Chem 23:444CrossRefGoogle Scholar
  12. 12.
    Valdés H, Sordo JA (2002) J Phys Chem A 106:3690CrossRefGoogle Scholar
  13. 13.
    Chalasinski G, Szczesniak MM (1994) Chem Rev 94:1723CrossRefGoogle Scholar
  14. 14.
    van Duijneveldt FB, de Rijdt JGCM, van Lenthe JH (1994) Chem Rev 94:1873CrossRefGoogle Scholar
  15. 15.
    Kestner NR, Combarías JE (1999) Rev Comp Chem 13:99CrossRefGoogle Scholar
  16. 16.
    Wieczorek R, Haskamp L, Dannenberg JJ (2004) J Phys Chem A 108:6713CrossRefGoogle Scholar
  17. 17.
    Ponti A, Mella M (2003) J Phys Chem A 107:7589CrossRefGoogle Scholar
  18. 18.
    Salvador P, Duran M, Dannenberg JJ (2002) J Phys Chem A 106:6883CrossRefGoogle Scholar
  19. 19.
    Kobko N, Dannenberg JJ (2001) J Phys Chem A 105:1944CrossRefGoogle Scholar
  20. 20.
    Wilson AK, van Mourik T, Dunning TH (1996) J Mol Struct: Theochem 388:339Google Scholar
  21. 21.
    van Mourik T, Wilson AK, Peterson KA, Woon DE, Dunning TH (1998) Adv Quantum Chem 31:105CrossRefGoogle Scholar
  22. 22.
    Boys SF, Bernardi F (1970) Mol Phys 19:553CrossRefGoogle Scholar
  23. 23.
    Meunier A, Levy B, Berthier G (1973) Theor Chim Acta 29:49CrossRefGoogle Scholar
  24. 24.
    Turi L, Dannenberg JJ (1993) J Phys Chem 97:2488CrossRefGoogle Scholar
  25. 25.
    Galano A, Alvarez-Idaboy JR (2006) J Comput Chem 27:1203CrossRefGoogle Scholar
  26. 26.
    Dunning TH Jr (2000) J Phys Chem A 104:9062CrossRefGoogle Scholar
  27. 27.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian Inc., WallingfordGoogle Scholar
  28. 28.
    Woon DE, Dunning TH (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  29. 29.
    Klopper W, Bak KL, Jørgensen P, Olsen J, Helgaker T (1999) J Phys B At Mol Opt Phys 32:R103CrossRefGoogle Scholar
  30. 30.
    Varandas AJC (2008) Theor Chem Acc 119:511CrossRefGoogle Scholar
  31. 31.
    Dunning TH Jr, Peterson KA, Wilson AK (2001) J Chem Phys 114:9244CrossRefGoogle Scholar
  32. 32.
    Peterson KA, Dunning TH Jr (1995) J Chem Phys 102:2032CrossRefGoogle Scholar
  33. 33.
    Alvarez-Idaboy JR, Mora-Diez N, Boyd RJ, Vivier-Bunge A (2001) J Am Chem Soc 123:2018CrossRefGoogle Scholar
  34. 34.
    Gruber-Stadler M, Muhlhauser M, Sellevag SR, Nielsen CJ (2008) J Phys Chem A 112:9CrossRefGoogle Scholar
  35. 35.
    Francisco-Márquez M, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2008) Chem Phys 344:273CrossRefGoogle Scholar
  36. 36.
    Papajak E, Leverentz HR, Zheng J, Truhlar DG (2009) J Chem Theory Comput 5:1197CrossRefGoogle Scholar
  37. 37.
    Dabkowska I, Jurecka P, Hobza P (2005) J Chem Phys 122:204322CrossRefGoogle Scholar
  38. 38.
    Galano A, Alvarez-Idaboy JR (2008) In: Goodsite ME, Johnson MS (eds) Advances in quantum chemistry: applications of quantum chemistry to the atmosphere, vol 55, chap 12. Elsevier, Amsterdam, p 245Google Scholar
  39. 39.
    Alvarez-Idaboy JR, Reyes L, Mora-Diez N (2007) Org Biomol Chem 5:3682CrossRefGoogle Scholar
  40. 40.
    Alvarez-Idaboy JR, Galano A, Bravo-Perez G, Ruiz ME (2001) J Am Chem Soc 123:8387CrossRefGoogle Scholar
  41. 41.
    Alvarez-Idaboy JR, Mora-Diez N, Vivier-Bunge A (2000) J Am Chem Soc 122:3715CrossRefGoogle Scholar
  42. 42.
    Vega-Rodriguez A, Alvarez-Idaboy JR (2009) Phys Chem Chem Phys 11:7649CrossRefGoogle Scholar
  43. 43.
    Francisco-Márquez M, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2003) Phys Chem Chem Phys 7:1392CrossRefGoogle Scholar
  44. 44.
    Uc VH, Alvarez-Idaboy JR, Galano A, Vivier-Bunge A (2008) J Phys Chem A 112:7608CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Departamento de Física y Química Teórica, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMexico DFMexico
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexico DFMexico

Personalised recommendations