A universal approach for continuum solvent pK a calculations: are we there yet?

  • Junming Ho
  • Michelle L. Coote
Feature Article


This paper reviews several pK a calculation strategies that are commonly used in aqueous acidity predictions. Among those investigated were the direct or absolute method, the proton exchange scheme, and the hybrid cluster–continuum (Pliego and Riveros) and implicit–explicit (Kelly, Cramer and Truhlar) models. Additionally, these protocols are applied in the pK a calculation of 55 neutral organic and inorganic acids in conjunction with various solvent models, including the CPCM-UAKS/UAHF, IPCM, SM6 and COSMO-RS, with a view to identifying a universal approach for accurate pK a predictions. The results indicate that the direct method is unsuitable for general pK a calculations, although moderately accurate results (MAD <3 units) are possible for certain classes of acids, depending on the choice of solvent model. The proton exchange scheme generally delivers good results (MAD <2 units), with CPCM-UAKS giving the best performance. Furthermore, the sensitivity of this approach to the choice of reference acid can be substantially lessened if the solvation energies for ionic species are calculated via the IPCM cluster–continuum approach. Reference-independent hybrid approaches that include explicit water molecules can potentially give reasonably accurate values (MAD generally ~2 units) depending on the solvent model and the number of explicit water molecules added.


Continuum solvent model pKa calculation Cluster-continuum model Proton exchange method 



We gratefully acknowledge support from the Australian Research Council under their Centres of Excellence program, and generous allocations of computing time on the National Facility of the Australian Partnership for Advanced Computing.

Supplementary material

214_2009_667_MOESM1_ESM.pdf (711 kb)
Supplementary material 1 (PDF 711 kb)
214_2009_667_MOESM2_ESM.pdf (1 mb)
Supplementary material 2 (PDF 1061 kb)


  1. 1.
    Tomasi J, Persico M (1994) Chem Rev 94:2027Google Scholar
  2. 2.
    Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161Google Scholar
  3. 3.
    Orozo M, Luque FJ (2000) Chem Rev 100:4187Google Scholar
  4. 4.
    Tomasi J, Mennucci B, Cammi R (2005) Chem Rev 105:2999Google Scholar
  5. 5.
    Bell RP (1973) The proton in chemistry. Chapman and Hall, LondonGoogle Scholar
  6. 6.
    Stewart R (1985) The proton: applications to organic chemistry. Academic Press, OrlandoGoogle Scholar
  7. 7.
    Richard JP, Amyes TL (2001) Curr Opin Chem Biol 5:626Google Scholar
  8. 8.
    Houk RJT, Monzingo A, Anslyn EV (2008) Acc Chem Res 41:401Google Scholar
  9. 9.
    Gerlt JA (1993) Biochemistry 32:11943Google Scholar
  10. 10.
    Toney MD (2005) Arch Biochem Biophys 433:279Google Scholar
  11. 11.
    Fitzpatrick PF (2001) Acc Chem Res 34:299Google Scholar
  12. 12.
    Nielsen JE, McCammon JA (2003) Protein Sci 12:1894Google Scholar
  13. 13.
    Arnett EM, Mach GW (1966) J Am Chem Soc 88:1177Google Scholar
  14. 14.
    Arnett EM, Scorrano G (1976) Adv Phys Org Chem 13:83Google Scholar
  15. 15.
    Gutowski KE, Dixon DA (2006) J Phys Chem A 110:12044Google Scholar
  16. 16.
    Guthrie JP (1978) Can J Chem 56:2342Google Scholar
  17. 17.
    Wong FM, Capule C, Chen DX, Gronert S, Wu W (2008) Org Lett 10:2757Google Scholar
  18. 18.
    Amyes TL, Richard JP (1996) J Am Chem Soc 118:3129Google Scholar
  19. 19.
    Richard JP, Williams G, Gao J (1999) J Am Chem Soc 121:715Google Scholar
  20. 20.
    Rios A, Richard JP, Amyes TL (2002) J Am Chem Soc 124:8251Google Scholar
  21. 21.
    Sievers A, Wolfenden R (2002) J Am Chem Soc 124:13986Google Scholar
  22. 22.
    Wong FM, Capule C, Wu W (2006) Org Lett 8:6019Google Scholar
  23. 23.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 127:124105Google Scholar
  24. 24.
    Baboul AG, Curtiss LA, Redfern PC, Raghavachari K (1999) J Chem Phys 110:7650Google Scholar
  25. 25.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764Google Scholar
  26. 26.
    Curtiss LA, Redfern PC, Raghavachari K, Rassolov V, Pople JA (1999) J Chem Phys 110:4703Google Scholar
  27. 27.
    Curtiss LA, Redfern PC, Raghavachari K (2007) J Chem Phys 126:84108Google Scholar
  28. 28.
    Ochterski JW, Petersson GA, Montgomery JA (1996) J Chem Phys 104:2598Google Scholar
  29. 29.
    Montgomery JA Jr, Frisch MJ, Ochterski JW, Petersson GA (1999) J Chem Phys 110:2822Google Scholar
  30. 30.
    Montgomery JA, Frisch MJ, Ochterski JW, Petersson GA (2000) J Chem Phys 112:6532Google Scholar
  31. 31.
    Klamt A, Schurmann G (1993) J Chem Soc Perkin Trans 2:799Google Scholar
  32. 32.
    Barone V, Cossi M (1998) J Phys Chem A 102:1995Google Scholar
  33. 33.
    Cossi M, Rega N, Scalmani G, Barone V (2003) J Comp Chem 24:669Google Scholar
  34. 34.
    Cances MT, Mennucci B, Tomasi J (1997) J Chem Phys 107:3032Google Scholar
  35. 35.
    Mennucci B, Tomasi J (1997) J Chem Phys 106:5151Google Scholar
  36. 36.
    Mennucci B, Cances MT, Tomasi J (1997) J Phys Chem B 101:10506Google Scholar
  37. 37.
    Tomasi J, Mennucci B, Cances MT (1999) J Mol Struct (Theochem) 464:211Google Scholar
  38. 38.
    Foresman JB, Keith TA, Wiberg KB, Snoonian J, Frisch MJ (1996) J Phys Chem 100:16098Google Scholar
  39. 39.
    Hawkins GD, Cramer CJ, Truhlar DG (1998) J Phys Chem B 102:3257Google Scholar
  40. 40.
    Cramer CJ, Truhlar DG (1991) J Am Chem Soc 1991:8552Google Scholar
  41. 41.
    Cramer CJ, Truhlar DG (1992) Science 256:213Google Scholar
  42. 42.
    Cramer CJ, Truhlar DG (1992) J Comput Chem 13:1089Google Scholar
  43. 43.
    Storer JW, Giesen DJ, Hawkins GD, Lynch GC, Cramer CJ, Truhlar DG, Liotard DA (1994) A solvation modeling in aqeous and nonaqueous solvents: new techniques and a re-examination of the Claisen rearrangement. In: Cramer CJ, Truhlar DG (eds) Structure and reactivity in aqueous solution. American Chemical Society, Washington, pp 24–49Google Scholar
  44. 44.
    Hawkins GD, Cramer CJ, Truhlar DG (1996) J Phys Chem 100:19824Google Scholar
  45. 45.
    Hawkins GD, Cramer CJ, Truhlar DG (1997) J Phys Chem B 101:7147Google Scholar
  46. 46.
    Hawkins GD, Liotard DA, Cramer CJ, Truhlar DG (1998) J Org Chem 63:4305Google Scholar
  47. 47.
    Thompson JD, Cramer CJ, Truhlar DG (2005) Theor Chem Acc 113:107Google Scholar
  48. 48.
    Thompson JD, Cramer CJ, Truhlar DG (2004) J Phys Chem A 108:6532Google Scholar
  49. 49.
    Kelly CP, Cramer CJ, Truhlar DG (2005) J Chem Theory Comput 1:1133Google Scholar
  50. 50.
    Marenich AV, Olson RM, Kelly CP, Cramer CJ, Truhlar DG (2007) J Chem Theor Comput 3:2011Google Scholar
  51. 51.
    Cramer CJ, Truhlar DG (2008) Acc Chem Res 41:760Google Scholar
  52. 52.
    Takano Y, Houk KN (2005) J Chem Theory Comput 1:70Google Scholar
  53. 53.
    Bryantsev VS, Diallo MS, Goddard WA III (2008) J Phys Chem B 112:9709Google Scholar
  54. 54.
    Pliego JR (2003) Chem Phys Lett 367:145Google Scholar
  55. 55.
    Pliego JR Jr, Riveros JM (2002) Phys Chem Chem Phys 4:1622Google Scholar
  56. 56.
    Kallies B, Mitzner R (1997) J Phys Chem B 101:2959Google Scholar
  57. 57.
    Shapley WA, Backsay GB, Warr GG (1998) J Phys Chem B 102:1938Google Scholar
  58. 58.
    Topol IA, Tawa GJ, Caldwell RA, Eissenstat MA, Burt SK (2000) J Phys Chem A 104:9619Google Scholar
  59. 59.
    Liptak MD, Shields GC (2001) J Am Chem Soc 123:7314Google Scholar
  60. 60.
    Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) J Am Chem Soc 124:6421Google Scholar
  61. 61.
    Chipman DM (2002) J Phys Chem A 106:7413Google Scholar
  62. 62.
    Klicic JJ, Friesner RA, Liu S-Y, Guida WC (2002) J Phys Chem A 106:1327Google Scholar
  63. 63.
    Magill AM, Cavell KJ, Yates BF (2004) J Am Chem Soc 126:8717Google Scholar
  64. 64.
    Magill AM, Yates BF (2004) Aust J Chem 57:1205Google Scholar
  65. 65.
    Murlowska K, Sadlej-Sosnowska N (2005) J Phys Chem A 109:5590Google Scholar
  66. 66.
    Krol M, Wrona M, Page CS, Bates PA (2006) J Chem Theory Comput 2:1520Google Scholar
  67. 67.
    da Silva G, Kennedy EM, Dlugogorski BZ (2006) J Phys Chem A 110:11371Google Scholar
  68. 68.
    Lu H, Chen X, Zhan CG (2007) J Phys Chem B 111:10599Google Scholar
  69. 69.
    Bryantsev VS, Diallo MS, Goddard WA (2007) J Phys Chem A 111:4422Google Scholar
  70. 70.
    Zimmermann MD, Tossell JA (2009) J Phys Chem A 113:5105Google Scholar
  71. 71.
    Namazian M, Zakery M, Noorbala MR, Coote ML (2008) Chem Phys Lett 451:163Google Scholar
  72. 72.
    Lopez X, Schaefer M, Dejaegere A, Karplus M (2002) J Am Chem Soc 124:5010Google Scholar
  73. 73.
    Saracino GAA, Improta R, Barone V (2003) Chem Phys Lett 373:411Google Scholar
  74. 74.
    Schmidt n, Knapp EW (2004) Chem Phys Chem 5:1513Google Scholar
  75. 75.
    Tossell JA, Sahai N (2000) Geochim Cosmochim Acta 64:4097Google Scholar
  76. 76.
    Lee C, Yang W, Parr RG (1988) Phys Rev B Condens Matter 37:785Google Scholar
  77. 77.
    Sadlej-Sosnowska N (2007) Theor Chem Acc 118:281Google Scholar
  78. 78.
    Lim C, Bashford D, Karplus M (1991) J Phys Chem 95:5610Google Scholar
  79. 79.
    Schuurmann G, Cossi M, Barone V, Tomasi J (1998) J Phys Chem A 102:6706Google Scholar
  80. 80.
    Dong H, Du H, Qian X (2008) J Phys Chem A 112:12687Google Scholar
  81. 81.
    Tossell JA (2995) Geochim Cosmochim Acta 69:5647Google Scholar
  82. 82.
    Ho J, Coote ML (2009) J Chem Theory Comput 5:295Google Scholar
  83. 83.
    Gao D, Wong PK, Maddalena D, Hwang J, Walker H (2005) J Phys Chem A 109:10776Google Scholar
  84. 84.
    Caballero NA, Melendez FJ, Munoz-Caro C, Nino A (2006) Biophys Chem 124:155Google Scholar
  85. 85.
    Barone V, Cossi M, Tomasi J (1997) J Chem Phys 107:3210Google Scholar
  86. 86.
    Camaioni DM, Schwerdtfeger CA (2005) J Phys Chem A 109:10795Google Scholar
  87. 87.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV, Tuttle TR Jr (1998) J Phys Chem A 102:7787Google Scholar
  88. 88.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem B 110:16066Google Scholar
  89. 89.
    da Silva EC, Silva CO, Nascimento MAC (1999) J Phys Chem A 103:11194Google Scholar
  90. 90.
    Silva CO, da Silva EC, Nascimento MAC (2000) J Phys Chem A 104:2402Google Scholar
  91. 91.
    Namazian M, Halvani S (2006) J Chem Thermodyn 38:1495Google Scholar
  92. 92.
    Namazian M, Heidary H (2003) THEOCHEM 620:257Google Scholar
  93. 93.
    Klamt A, Eckert F, Diedenhofen M, Beck ME (2003) J Phys Chem A 107:9380Google Scholar
  94. 94.
    Yang W, Qian Z, Miao Q, Wang Y, Bi S (2009) Phys Chem Chem Phys 11:2396Google Scholar
  95. 95.
    Toth AM, Liptak MD, Phillips DL, Shields GC (2001) J Chem Phys 114:4595Google Scholar
  96. 96.
    Namazian M, Kalantary-Fotooh F, Noorbala MR, Searles DJ, Coote ML (2006) THEOCHEM 758:275Google Scholar
  97. 97.
    Fu Y, Liu L, Li R-Q, Liu R, Guo Q-X (2004) J Am Chem Soc 126:814Google Scholar
  98. 98.
    Gomez-Bombarelli R, Gonzalez-Perez M, Perez-Prior MT, Calle E, Casado J (2009) J Org Chem 74:4943Google Scholar
  99. 99.
    Ding F, Smith JM, Wang H (2009) J Org Chem 74:2679Google Scholar
  100. 100.
    Mujika JI, Mercero JM, Lopez X (2003) J Phys Chem A 107:6099Google Scholar
  101. 101.
    Almerindo GI, Tondo DW, Pliego JR Jr (2004) J Phys Chem A 108:166Google Scholar
  102. 102.
    Pliego JR Jr, Riveros JM (2001) J Phys Chem A 105:7241Google Scholar
  103. 103.
    Pliego JR Jr, Riveros JM (2002) J Phys Chem A 106:7434Google Scholar
  104. 104.
    Wang X, Fu H, Du D, Zhou Z (2008) Chem Phys Lett 460:339Google Scholar
  105. 105.
    Smiechowski M (2009) J Mol Struct 924–926:170Google Scholar
  106. 106.
    Kelly CP, Cramer CJ, Truhlar DG (2006) J Phys Chem A 110:2493Google Scholar
  107. 107.
    Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST Standard Reference Database Number 69. National Institute of Standards and Technology, Gaithersburg MD, 20899. Retrieved 12 August 2009
  108. 108.
    Atkins PW (1998) Physical chemistry, 6th edn. Oxford University Press, OxfordGoogle Scholar
  109. 109.
    Scott AP, Radom L (1996) J Phys Chem 100:16502Google Scholar
  110. 110.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  111. 111.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998) J Chem Phys 109:6264Google Scholar
  112. 112.
    Boese AD, Martin JML (2004) J Chem Phys 121:3405Google Scholar
  113. 113.
    Becke AD (1988) Phys Rev A Gen Phys 38:3098Google Scholar
  114. 114.
    Perdew JP (1986) Phys Rev B 33:8822Google Scholar
  115. 115.
    Frisch MJT GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, JohnsonB, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford CTGoogle Scholar
  116. 116.
    Klamt A (1995) J Phys Chem 99:2224Google Scholar
  117. 117.
    Klamt A, Jonas V, Burger T, Lohrenz JCW (1998) J Phys Chem A 102:5074Google Scholar
  118. 118.
    Klamt A (2005) COSMO-RS: from quantum chemistry to fluid phase thermodynamics and drug design. Elsevier Science Ltd., Amsterdam, The NetherlandsGoogle Scholar
  119. 119.
    Higashi MMAV, Olson RM, Chamberlin AC, Pu J, Kelly CP, Thompson JD, Xidos JDL Jr, Zhu T, Hawkins GD, Chuang Y-Y, Fast PL, Lynch BJ, Liotard DA, Rinaldi DG Jr, Cramer CJ, Truhlar DG, GAMESSPLUS—version 2008–2, University of Minnesota M, 2008, based on the General Atomic and Molecular, Electronic Structure System (GAMESS) as described in Schmidt MWB KK, Boatz JA, Elbert STG MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TLD M, Montgomery JA (1993) J Comp Chem 14:1347Google Scholar
  120. 120.
    Louwen JN, Pye C, Lenthe Ev (2008) ADF2008.01 COSMO-RS, SCM. Theoretical chemistry. Vrije Universiteit, Amsterdam.
  121. 121.
    Pye CC, Ziegler T, van Lenthe E, Louwen JN (2009) Can J Chem 87:790Google Scholar
  122. 122.
    Florian J, Warshel A (1997) J Phys Chem B 101:5583Google Scholar
  123. 123.
    Pearson RG (1986) J Am Chem Soc 108:6109Google Scholar
  124. 124.
    Amyes TL, Richard JP (2007) Proton transfer to and from carbon in model reactions. In: Hynes JT, Kilnman JP, Limbach H, Schowen RL (eds) Hydrogen-transfer reactions. Wiley, WeinheimGoogle Scholar
  125. 125.
  126. 126.
    Eckert F, Klamt A (2006) J Comput Chem 27:11Google Scholar
  127. 127.
    Eckert F, Leito I, Kaljurand I, Kütt A, Klamt A, Diedenhofen M (2009) J Comp Chem 30:799Google Scholar
  128. 128.
    Topol IA, Burt SK, Rashin AA, Erikson JW (2000) J Phys Chem A 104:866Google Scholar
  129. 129.
    Tawa GJ, Topol IA, Burt SK, Caldwell RA, Rashin AA (1998) J Chem Phys 109:4852Google Scholar
  130. 130.
    Zhan CG, Dixon DA (2001) J Phys Chem A 105:11534Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Free-Radical Chemistry and Biotechnology, Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations