Theoretical Chemistry Accounts

, Volume 125, Issue 3–6, pp 319–327 | Cite as

Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine

  • Janina Kneipp
  • Burghardt Wittig
  • Henrik Bohr
  • Katrin Kneipp
Regular Article

Abstract

Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy. This article highlights three directions where SERS can offer interesting new capabilities. This includes SERS as a technique for detecting and tracking a single molecule, a SERS-based nanosensor for probing the chemical composition and the pH value in a live cell, and the effect of so-called surface-enhanced Raman optical activity, which provides information on the chiral organization of molecules on surfaces.

Keywords

Nanosensor Raman spectroscopy Cells Single molecule Plasmonics 

References

  1. 1.
    Gitai Z (2009) New fluorescence microscopy methods for microbiology: sharper, faster, and quantitative. Curr Opin Microbiol 12:341–346CrossRefGoogle Scholar
  2. 2.
    Xing Y, Xia ZY, Rao JH (2009) Semiconductor quantum dots for biosensing and in vivo imaging. IEEE Trans Nanobiosci 8:4–12CrossRefGoogle Scholar
  3. 3.
    Laserna JJ (1996) Modern techniques in Raman spectroscopy. Wiley, Chichester, New York, Brisbane, Toronto, SingaporeGoogle Scholar
  4. 4.
    Puppels GJ, Mul FFMD, Otto C, Greve J, RobertNicoud M, Arndt-Jovin DJ, Jovin T (1990) Studying single living cells and chromosomes by confocal Raman microspectroscopy. Nature 347:301–303CrossRefGoogle Scholar
  5. 5.
    Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1–R59CrossRefGoogle Scholar
  6. 6.
    Kneipp J, Bakker Schut TC, Kliffen M, Menke-Pluijmers M, Puppels GJ (2003) Characterization of breast duct epithelia: a Raman spectroscopic study. Vib Spectrosc 32:67–74CrossRefGoogle Scholar
  7. 7.
    Kneipp J, Miller LM, Joncic M, Kittel M, Lasch P, Beekes M, Naumann D (2003) In situ identification of protein structural changes in prion-infected tissue. Biochim Biophys Acta 1639:152–158Google Scholar
  8. 8.
    Scepanovic OR, Fitzmaurice M, Gardecki JA, Angheloiu GO, Awasthi S, Motz JT, Kramer JR, Dasari RR, Feld MS (2006) Detection of morphological markers of vulnerable atherosclerotic plaque using multimodal spectroscopy. J Biomed Opt 11(2):021003CrossRefGoogle Scholar
  9. 9.
    Kneipp K (2007) Surface-enhanced Raman scattering. Phys Today 60:40–46CrossRefGoogle Scholar
  10. 10.
    Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS (2002) Surface-enhanced Raman scattering and biophysics. J Phys Condens Matter 14:R597–R624CrossRefGoogle Scholar
  11. 11.
    Kneipp K, Kneipp H (2006) Single molecule Raman scattering. Appl Spectrosc 60:322A–334ACrossRefGoogle Scholar
  12. 12.
    Stuart AD, Yuen JM, Shah NC, Lyandres O, Yonzon CR, Glucksberg MR, Walsh JT, Van Duyne RP (2006) In vivo glucose measurement by surface-enhanced Raman spectroscopy. Anal Chem 78:7211–7215CrossRefGoogle Scholar
  13. 13.
    Qian XM, Nie SM (2008) Single-molecule and single-nanoparticle SERS: from fundamental mechanisms to biomedical applications. Chem Soc Rev 37:912–920CrossRefGoogle Scholar
  14. 14.
    Kneipp J, Kneipp H, Kneipp K (2008) SERS—a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 37:1052–1060CrossRefGoogle Scholar
  15. 15.
    Hering K, Cialla D, Ackermann K, Dorfer T, Moller R, Schneidewind H, Mattheis R, Fritzsche W, Rosch P, Popp J (2008) SERS: a versatile tool in chemical and biochemical diagnostics. Anal Bioanal Chem 390:113–124CrossRefGoogle Scholar
  16. 16.
    Qian XM, Peng XH, Ansari DO, Yin-Goen Q, Chen GZ, Shin DM, Yang L, Young AN, Wang MD, Nie SM (2008) In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat Biotechnol 26:83–90CrossRefGoogle Scholar
  17. 17.
    Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  18. 18.
    Hudson SD, Chumanov G (2009) Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy). Anal Bioanal Chem 394:679–686CrossRefGoogle Scholar
  19. 19.
    Scaffidi JP, Gregas MK, Seewaldt V, Vo-Dinh T (2009) SERS-based plasmonic nanobiosensing in single living cells. Anal Bioanal Chem 393:1135–1141CrossRefGoogle Scholar
  20. 20.
    Barron LD, Zhu FJ, Hecht L, Tranter GE, Isaacs NW (2007) Raman optical activity: an incisive probe of molecular chirality and biomolecular structure. J Mol Struct 834:7–16CrossRefGoogle Scholar
  21. 21.
    Nafie LA (1996) Vibrational optical activity in focus. Appl Spectrosc 50:A12–A12CrossRefGoogle Scholar
  22. 22.
    Haesler J, Schindelholz I, Riguet E, Bochet CG, Hug W (2007) Absolute configuration of chirally deuterated neopentane. Nature 446:526–529CrossRefGoogle Scholar
  23. 23.
    Otto A (1984) Surface-enhanced Raman scattering: ‘classical’ and ‘chemical’ origins. In: Cardona M, Guntherodt G (eds) Light scattering in solids IV. Electronic scattering, spin effects, SERS and morphic effects, vol 1984. Springer, Berlin, pp 289–418Google Scholar
  24. 24.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57:783–826CrossRefGoogle Scholar
  25. 25.
    Campion A, Kambhampati P (1998) Surface-enhanced Raman scattering. Chem Soc Rev 27:241–250CrossRefGoogle Scholar
  26. 26.
    Stockman MI, Shalaev VM, Moskovits M, Botet R, George TF (1992) Enhanced Raman scattering by fractal clusters: scale-invariant theory. Phys Rev B 46:2821–2830CrossRefGoogle Scholar
  27. 27.
    Li KR, Stockman MI, Bergman DJ (2003) Self-similar chain of metal nanospheres as an efficient nanolens. Phys Rev Lett 91:227402CrossRefGoogle Scholar
  28. 28.
    Schatz GC, Young MA, Van Duyne RP (2006) Electromagnetic mechanism of SERS. In: Surface-enhanced Raman scattering: physics and applications, vol 103. Springer, Berlin, pp 19–45Google Scholar
  29. 29.
    Kneipp J, Kneipp H, Kneipp K (2006) Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc Natl Acad Sci USA 103:17149–17153CrossRefGoogle Scholar
  30. 30.
    So PTC, Dong CY, Masters BR, Berland KM (2000) Two-photon excitation fluorescence microscopy. Ann Rev Biomed Eng 2:399–429CrossRefGoogle Scholar
  31. 31.
    Kobat D, Durst ME, Nishimura N, Wong AW, Schaffer CB, Xu C (2009) Deep tissue multiphoton microscopy using longer wavelength excitation. Opt Express 17:13354–13364CrossRefGoogle Scholar
  32. 32.
    Schade R, Weiss T, Liefeith K (2009) Two-photon techniques in tissue engineering. Int J Artif Organs 32:394Google Scholar
  33. 33.
    Stepanenko I, Kompanetz V, Makhneva Z, Chekalin S, Moskalenko A, Razjivin A (2009) Two-photon excitation spectroscopy of carotenoid-containing and carotenoid-depleted LH2 complexes from purple bacteria. J Phys Chem B 113:11720–11723CrossRefGoogle Scholar
  34. 34.
    Kneipp K, Kneipp H, Kartha VB, Manoharan R, Deinum G, Itzkan I, Dasari RR, Feld MS (1998) Detection and identification of a single DNA base molecule using surface-enhanced Raman scattering (SERS). Phys Rev E 57:R6281–R6284CrossRefGoogle Scholar
  35. 35.
    Kneipp K, Kneipp H, Abdali S, Berg RW, Bohr H (2004) Single molecule Raman detection of enkephalin on silver colloidal particles. Spectrosc Int J 18:433–440Google Scholar
  36. 36.
    Kneipp J (2006) Nanosensors based on SERS for applications in living cells. In: Surface-enhanced Raman scattering: physics and applications, vol 103. Springer, Berlin, pp 335–349Google Scholar
  37. 37.
    Chourpa I, Lei FH, Dubois P, Manfait M, Sockalingum GD (2008) Intracellular applications of analytical SERS spectroscopy and multispectral imaging. Chem Soc Rev 37:993–1000CrossRefGoogle Scholar
  38. 38.
    Kneipp J, Kneipp H, Rice WL, Kneipp K (2005) Optical probes for biological applications based on surface-enhanced Raman scattering from indocyanine green on gold nanoparticles. Anal Chem 77:2381–2385CrossRefGoogle Scholar
  39. 39.
    Kneipp J, Kneipp H, McLaughlin M, Brown D, Kneipp K (2006) In vivo molecular probing of cellular compartments with gold nanoparticles and nanoaggregates. Nano Lett 6:2225–2231CrossRefGoogle Scholar
  40. 40.
    Dijkstra RJ, Scheenen W, Dam N, Roubos EW, ter Meulen JJ (2007) Monitoring neurotransmitter release using surface-enhanced Raman spectroscopy. J Neurosci Methods 159:43–50CrossRefGoogle Scholar
  41. 41.
    Michota A, Bukowska J (2003) Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J Raman Spectrosc 34:21–25CrossRefGoogle Scholar
  42. 42.
    Bishnoi SW, Rozell CJ, Levin CS, Gheith MK, Johnson BR, Johnson DH, Halas NJ (2006) All-optical nanoscale pH meter. Nano Lett 6:1687–1692CrossRefGoogle Scholar
  43. 43.
    Talley CE, Jusinski L, Hollars CW, Lane SM, Huser T (2004) Intracellular pH sensors based on surface-enhanced Raman scattering. Anal Chem 76:7064–7068CrossRefGoogle Scholar
  44. 44.
    Kneipp J, Kneipp H, Wittig B, Kneipp K (2007) One- and two-photon excited optical pH probing for cells using surface-enhanced Raman and hyper-Raman nanosensors. Nano Lett 7:2819–2823CrossRefGoogle Scholar
  45. 45.
    Muller N, Payan E, Lapicque F, Bannwarth B, Netter P (1990) Pharmacological aspects of chiral nonsteroidal antiinflammatory drugs. Fundam Clin Pharmacol 4:617–634CrossRefGoogle Scholar
  46. 46.
    Skelley AM, Scherer JR, Aubrey AD, Grover WH, Ivester RHC, Ehrenfreund P, Grunthaner FJ, Bada JL, Mathies RA (2005) Development and evaluation of a microdevice for amino acid biomarker detection and analysis on Mars. Proc Natl Acad Sci USA 102:1041–1046CrossRefGoogle Scholar
  47. 47.
    Kumar AP, Jin D, Lee YI (2009) Recent development on spectroscopic methods for chiral analysis of enantiomeric compounds. Appl Spectrosc Rev 44:267–316CrossRefGoogle Scholar
  48. 48.
    Barron LD, Buckingham AD (1971) Raman optical activity. Mol Phys 20:1111CrossRefGoogle Scholar
  49. 49.
    Deplazes E, van Bronswijk W, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2008) A combined theoretical and experimental study of the structure and vibrational absorption, vibrational circular dichroism, Raman and Raman optical activity spectra of the L-histidine zwitterion. Theor Chem Acc 119:155–176CrossRefGoogle Scholar
  50. 50.
    Jalkanen KJ, Degtyarenko IM, Nieminen XC, Nafie LA, Zhu F, Barron LD (2008) Role of hydration in determining the structure and vibrational spectra of L-alanine and N-acetyl L-alanine N′-methylamide in aqueous solution: a combined theoretical and experimental study. Theor Chem Acc 119:191–210CrossRefGoogle Scholar
  51. 51.
    Jensen L (2009) Surface-enhanced vibrational Raman optical activity: a time-dependent density functional theory approach. J Phys Chem A 113:4437–4444CrossRefGoogle Scholar
  52. 52.
    Kneipp H, Kneipp J, Kneipp K (2006) Surface enhanced Raman optical activity (SEROA) on adenine in silver colloidal solution. Anal Chem 78:1363CrossRefGoogle Scholar
  53. 53.
    Chen Q, Frankel DJ, Richardson NV (2002) Self-assembly of adenine on Cu(110) surfaces. Langmuir 2002:3219–3225CrossRefGoogle Scholar
  54. 54.
    Barron LD, Hecht L, McColl IH, Blanch EW (2004) Raman optical activity comes of age. Mol Phys 102:731–744CrossRefGoogle Scholar
  55. 55.
    Sass JK, Neff H, Moskovits M, Holloway S (1981) Electric field gradient effects on the spectroscopy of adsorbed molecules. J Phys Chem 85:621–623CrossRefGoogle Scholar
  56. 56.
    Efrima S (1983) The effect of large electric-field gradients on the Raman optical-activity of molecules adsorbed on metal-surfaces. Chem Phys Lett 102:79–82CrossRefGoogle Scholar
  57. 57.
    Efrima S (1985) Raman optical-activity of molecules adsorbed on metal-surfaces—theory. J Chem Phys 83:1356–1362CrossRefGoogle Scholar
  58. 58.
    Humblot V, Barlow SM, Raval R (2004) Two-dimensional organisational chirality through supramolecular assembly of molecules at metal surfaces. Prog Surf Sci 76:1–19CrossRefGoogle Scholar
  59. 59.
    Humblot V, Raval R (2005) Chiral metal surfaces from the adsorption of chiral and achiral molecules. Appl Surf Sci 241:150–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Janina Kneipp
    • 2
    • 1
  • Burghardt Wittig
    • 3
  • Henrik Bohr
    • 4
  • Katrin Kneipp
    • 3
    • 4
  1. 1.Federal Institute for Materials Research and TestingBerlinGermany
  2. 2.Chemistry DepartmentHumboldt University BerlinBerlinGermany
  3. 3.Institute of Molecular Biology and BioinformaticsCharité University MedicineBerlinGermany
  4. 4.Physics DepartmentDanish Technical UniversityLyngbyDenmark

Personalised recommendations