Theoretical Chemistry Accounts

, 124:445 | Cite as

Phenomenological description of the transition state, and the bond breaking and bond forming processes of selected elementary chemical reactions: an information-theoretic study

  • Rodolfo O. Esquivel
  • Nelson Flores-Gallegos
  • Cristina Iuga
  • Edmundo M. Carrera
  • Juan Carlos Angulo
  • Juan Antolín
Regular Article

Abstract

Theoretic-information measures of the Shannon type are employed to describe the course of the simplest hydrogen abstraction and the identity SN2 exchange chemical reactions. For these elementary chemical processes, the transition state is detected and the bond breaking/forming regions are revealed. A plausibility argument of the former is provided and verified numerically. It is shown that the information entropy profiles posses much more chemically meaningful structure than the profile of the total energy for these chemical reactions. Our results support the concept of a continuum of transient of Zewail and Polanyi for the transition state rather than a single state, which is also in agreement with reaction force analyses. This is performed by following the intrinsic reaction coordinate (IRC) path calculated at the MP2 level of theory from which Shannon entropies in position and momentum spaces at the QCISD(T)/6-311++G(3df,2p) level are determined. Several selected descriptors of the density are utilized to support the observations, such as the molecular electrostatic potential, the hardness, the dipole moment along with geometrical parameters.

Keywords

Reaction mechanisms Chemical reaction Information theory Ab initio calculations 

Notes

Acknowledgments

We wish to thank José María Pérez-Jordá and Miroslav Kohout for kindly providing with their numerical codes. R.O.E. wishes to thank Juan Carlos Angulo and Jesús Sánchez-Dehesa for their kind hospitality during his sabbatical stay on the Departamento de Física Atómica, Molecular y Nuclear at the Universidad de Granada, Spain. We acknowledge financial support through Mexican grants 08226 CONACyT, PIFI 3.3 PROMEP-SEP and Spanish grants MICINN projects FIS-2008-02380, FIS-2005-06237 (J.A.), FQM-1735, P05-FQM-00481 and P06-FQM-2445 of Junta de Andalucía. J.C.A., J.A. and R.O.E. belong to the Andalusian research group FQM-0207. E.C. wishes to thank CONACyT (México) for a PhD fellowship. Allocation of supercomputing time from the Laboratorio de Supercómputo y Visualización at UAM and to the Sección de Supercomputacion at CSIRC-Universidad de Granada is gratefully acknowledged. We also wish to thank the referee whose suggestions have helped to enrich the paper.

References

  1. 1.
    Hoffman R, Shaik S, Hiberty PC (2003) Acc Chem Res 36:750–756CrossRefGoogle Scholar
  2. 2.
    Schlegel HB (1987) Adv Chem Phys 67:249–286CrossRefGoogle Scholar
  3. 3.
    Eyring H (1935) J Chem Phys 3:107–115CrossRefGoogle Scholar
  4. 4.
    Wigner E (1938) Trans Faraday SOC 34:29–41CrossRefGoogle Scholar
  5. 5.
    Fukui K (1981) Acc Chem Res 14:363–368CrossRefGoogle Scholar
  6. 6.
    González C, Schlegel HB (1990) J Phys Chem 94:5523–5527CrossRefGoogle Scholar
  7. 7.
    Peng Ch, Schlegel HB (1993) Isr J Chem 33:449–454Google Scholar
  8. 8.
    Peng Ch, Ayala PhY, Schlegel HB, Frisch MJ (1996) J Comp Chem 17:49–56CrossRefGoogle Scholar
  9. 9.
    Fan L, Ziegler T (1992) J Am Chem Soc 114:10890–10897CrossRefGoogle Scholar
  10. 10.
    Safi B, Choho K, Geerlings P (2001) J Phys Chem A 105:591–601CrossRefGoogle Scholar
  11. 11.
    Pople J, Krishnan AR, Schlegel HB, Binkley JS (1978) Int J Quantum Chem 14:545–560CrossRefGoogle Scholar
  12. 12.
    González-García N, Pu J, González-Lafont A, Lluch JM, Truhlar DG (2006) J Chem Theory Comput 2:895–904CrossRefGoogle Scholar
  13. 13.
    Ishida K, Morokuma K, Komornicki A (1977) J Chem Phys 66:2153–2156CrossRefGoogle Scholar
  14. 14.
    Schmidt MW, Gordon MS, Dupuis M (1985) J Am Chem Soc 107:2585–2589CrossRefGoogle Scholar
  15. 15.
    Baskin CP, Bender CF, Bauschlicher CW Jr, Schaefer HF III (1974) J Am Chem Soc 96:2709–2713CrossRefGoogle Scholar
  16. 16.
    Shaik S, Ioffe A, Reddy AC, Pross A (1994) J Am Chem Soc 116:213–262CrossRefGoogle Scholar
  17. 17.
    Hammond GS (1955) J Am Chem Soc 77:334–338CrossRefGoogle Scholar
  18. 18.
    Leffler JE (1953) Science 117:340–341CrossRefGoogle Scholar
  19. 19.
    Shaik S (1981) J Am Chem Soc 103:3692–3701CrossRefGoogle Scholar
  20. 20.
    McWeeny R (1989) Methods of molecular quantum mechanics. Academic Press, LondonGoogle Scholar
  21. 21.
    Shaik S (1998) In: Schleyer PVR (ed) Encyclopedia of computational chemistry, vol 5. Wiley, Chichester, UK, pp 3143–3156Google Scholar
  22. 22.
    Shaik SS (1985) Prog Phys Org Chem 15:197–337CrossRefGoogle Scholar
  23. 23.
    Shaik SS (1990) Acta Chem Scand 44:205–221CrossRefGoogle Scholar
  24. 24.
    Shaik SS, Hiberty PC (1995) Adv Quantum Chem 26:99–163CrossRefGoogle Scholar
  25. 25.
    Shaik SS, Shurki S (1999) Angew Chem Int Ed Engl 38:586–625CrossRefGoogle Scholar
  26. 26.
    Shaik SS, Ch Reddy (1994) J Chem Soc Faraday Trans 90:1631–1642CrossRefGoogle Scholar
  27. 27.
    Shaik SS (1988) J Am Chem Soc 110:1127–1131CrossRefGoogle Scholar
  28. 28.
    Glukhovtsev MN, Pross A, Radom L (1995) J Am Chem Soc 117:2024–2032CrossRefGoogle Scholar
  29. 29.
    Glukhovtsev MN, Pross A, Radom L (1996) J Am Chem Soc 118:6273–6284CrossRefGoogle Scholar
  30. 30.
    Wolfe S, Mitchell DJ, Schlegel HB (1981) J Am Chem Soc 103:7692CrossRefGoogle Scholar
  31. 31.
    Shi Z, Boyd RJ (1989) J Am Chem Soc 111:1575–1579CrossRefGoogle Scholar
  32. 32.
    Pross A, Shaik S (1982) Tetrahedron Lett 23:5467–5470Google Scholar
  33. 33.
    Shaik S, Ioffe A, Reddy AC, Pross A (1994) J Am Chem Soc 116:262–273CrossRefGoogle Scholar
  34. 34.
    Shaik SS, Ch Reddy (1994) J Chem Soc Faraday Trans 90:1631–1642CrossRefGoogle Scholar
  35. 35.
    Shurki A, Shaik SS (1998) J Mol Struct (Theochem) 424:37–45CrossRefGoogle Scholar
  36. 36.
    Zewail AH (1988) Science 242:1645–1653CrossRefGoogle Scholar
  37. 37.
    Zewail AH (2000) J Phys Chem A 104:5660–5694CrossRefGoogle Scholar
  38. 38.
    Bradforth SE, Arnold DW, Newmark DM, Manolopoulos DE (1993) J Chem Phys 99:6345–6359CrossRefGoogle Scholar
  39. 39.
    Shi Z, Boyd RJ (1991) J Am Chem Soc 113:1072–1076CrossRefGoogle Scholar
  40. 40.
    Bader RFW, MacDougall PJ (1985) J Am Chem Soc 107:6788–6795CrossRefGoogle Scholar
  41. 41.
    Balakrishnan N, Sathyamurthy N (1989) Chem Phys Lett 164:267–269CrossRefGoogle Scholar
  42. 42.
    Ho M, Schmider, Weaver DF, Smith VH Jr, Sagar RP, Esquivel RO (2000) Int J Quant Chem 77:376–382CrossRefGoogle Scholar
  43. 43.
    Knoerr EH, Eberhart ME (2001) J Phys Chem A 105:880–884CrossRefGoogle Scholar
  44. 44.
    Shaik SS, Schlegel HB, Wolfe S (1992) Theoretical aspects of physical organic chemistry: the SN2 reaction. Wiley, New YorkGoogle Scholar
  45. 45.
    Tachibana AJ (2001) Chem Phys 115:3497–3518Google Scholar
  46. 46.
    Coulson CA (1961) Valence, 2nd edn. Clarendon, OxfordGoogle Scholar
  47. 47.
    Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2009) J Mol Model 15:707–710CrossRefGoogle Scholar
  48. 48.
    Toro-Labbé A, Gutiérrez-Oliva S, Murray JS, Politzer P (2007) Mol Phys 105:2619–2625CrossRefGoogle Scholar
  49. 49.
    Murray JS, Toro-Labbé A, Clark T, Politzer P (2009) J Mol Model 15:701–706CrossRefGoogle Scholar
  50. 50.
    Jaque P, Toro-Labbé A, Geerlings P, De Proft F (2009) J Phys Chem A 113:332–344CrossRefGoogle Scholar
  51. 51.
    Borgoo A, Jaque P, Toro-Labbé A, Van Alsenoy C, Geerlings P (2009) Phys Chem Chem Phys 11:476–482CrossRefGoogle Scholar
  52. 52.
    Gadre SR (2003) In: Sen KD (ed) Reviews of modern quantum chemistry: a celebration of the contributions of Robert G. Parr, vol 1. World Scientific, Singapore, pp 108–147Google Scholar
  53. 53.
    Koga T, Morita M (1983) J Chem Phys 79:1933–1938CrossRefGoogle Scholar
  54. 54.
    Ghosh SK, Berkowitz M, Parr RG (1984) Proc Natl Acad Sci USA 81:8028–8031CrossRefGoogle Scholar
  55. 55.
    Angulo JC, Dehesa JS (1992) J Chem Phys 97:6485–6495CrossRefGoogle Scholar
  56. 56.
    Antolín J, Zarzo A, Angulo JC (1993) Phys Rev A 48:4149–4155CrossRefGoogle Scholar
  57. 57.
    Angulo JC (1994) Phys Rev A 50:311–313CrossRefGoogle Scholar
  58. 58.
    Massen SE, Panos CP (1998) Phys Lett A 246:530–533CrossRefGoogle Scholar
  59. 59.
    Ramirez JC, Perez JMH, Sagar RP, Esquivel RO, Ho M, Smith VH Jr (1998) Phys Rev A 58:3507–3515CrossRefGoogle Scholar
  60. 60.
    Nalewajski RF, Parr RG (2001) J Phys Chem A 105:7391–7400CrossRefGoogle Scholar
  61. 61.
    Nagy A (2003) J Chem Phys 119:9401–9405CrossRefGoogle Scholar
  62. 62.
    Romera E, Dehesa JS (2004) J Chem Phys 120:8906–8912CrossRefGoogle Scholar
  63. 63.
    Karafiloglou P, Panos CP (2004) Chem Phys Lett 389:400–404CrossRefGoogle Scholar
  64. 64.
    Sen KD (2005) J Chem Phys 123:074110 (1–9)Google Scholar
  65. 65.
    Parr RG, Nalewajski RF, Ayers PW (2005) J Phys Chem A 109:3957–3959CrossRefGoogle Scholar
  66. 66.
    Guevara NL, Sagar RP, Esquivel RO (2005) J Chem Phys 122:084101-1–084101-8CrossRefGoogle Scholar
  67. 67.
    Shi Q, Kais S (2005) J Chem Phys 309:127–131CrossRefGoogle Scholar
  68. 68.
    Chatzisavvas KC, Moustakidis CC, Panos CP (2005) J Chem Phys 123:174111–174300CrossRefGoogle Scholar
  69. 69.
    Sen KD, Katriel JJ (2006) Chem Phys 125:074117 (1–4)Google Scholar
  70. 70.
    Nagy A (2006) Chem Phys Lett 425:154–156CrossRefGoogle Scholar
  71. 71.
    Ayers W (2006) Theor Chem Acc 115:253–256CrossRefGoogle Scholar
  72. 72.
    Martyusheva LM, Seleznev VD (2006) Phys Rep 426:1–45CrossRefGoogle Scholar
  73. 73.
    Liu S (2007) J Chem Phys 126:191107 (1–3)Google Scholar
  74. 74.
    Shannon CE (1948) Bell Syst Tech J 27:379–423Google Scholar
  75. 75.
    Bialynicky-Birula I, Mycielski J (1975) Commun Math Phys 44:129–132CrossRefGoogle Scholar
  76. 76.
    Politzer P, Truhlar DG (1981) Chemical applications of atomic and molecular electrostatic potentials. Academic Press, New YorkGoogle Scholar
  77. 77.
    Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512–7516CrossRefGoogle Scholar
  78. 78.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, New YorkGoogle Scholar
  79. 79.
    Koopmans TA (1933) Physica 1:104–113CrossRefGoogle Scholar
  80. 80.
    Janak JF (1978) Phys Rev B 18:7165–7168CrossRefGoogle Scholar
  81. 81.
    Ghanty TK, Ghosh SK (1993) J Phys Chem 97:4951–4953CrossRefGoogle Scholar
  82. 82.
    Roy R, Chandra AK, Pal S (1994) J Phys Chem 98:10447–10450CrossRefGoogle Scholar
  83. 83.
    Hati S, Datta D (1994) J Phys Chem 98:10451–10454CrossRefGoogle Scholar
  84. 84.
    Simon-Manso Y, Fuenteaelba P (1998) J Phys Chem A 102:2029–2032CrossRefGoogle Scholar
  85. 85.
    Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065–2091CrossRefGoogle Scholar
  86. 86.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533CrossRefGoogle Scholar
  87. 87.
    Pearson RG (1973) Hard and soft acids and bases. Dowen, Hutchinson and Ross, StroudsburgGoogle Scholar
  88. 88.
    Pearson RG (1997) Chemical hardness. Wiley–VCH, New YorkCrossRefGoogle Scholar
  89. 89.
    Tozer DJ, De Proft F (2005) J Phys Chem A 109:8923CrossRefGoogle Scholar
  90. 90.
    De Proft F, Chattaraj PK, Ayers PW, Torrent-Sucarrat M, Elango M, Subramanian V, Giri S, Geerlings P (2008) J Chem Theory Comput 4:595–602CrossRefGoogle Scholar
  91. 91.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision D.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  92. 92.
    Johnson BA, Gonzales CA, Gill PMW, Pople JA (1994) Chem Phys Lett 221:l00–108CrossRefGoogle Scholar
  93. 93.
    González C, Schlegel HB (1989) J Phys Chem 90:2154–2161CrossRefGoogle Scholar
  94. 94.
    Pérez-Jordá JM, San-Fabián E (1993) Comput Phys Commun 77:46–56CrossRefGoogle Scholar
  95. 95.
    Pérez-Jordá JM, Becke AD, San-Fabián E (1994) J Chem Phys 100:6520–6534CrossRefGoogle Scholar
  96. 96.
    Kohout M (2007) Program DGRID, version 4.2Google Scholar
  97. 97.
    Schaftenaar G, Noordik JH (2000) MOLDEN: a pre- and post-processing program for molecular and electronic structures. J Comput Aided Mol Des 14:123–134CrossRefGoogle Scholar
  98. 98.
    Polanyi JC, Zewail AH (1995) Acc Chem Res 28:119–132CrossRefGoogle Scholar
  99. 99.
    Pennini P, Plastino A (2007) Phys Lett A 365:263–267CrossRefGoogle Scholar
  100. 100.
    Sen KD, Antolín J, Angulo JC (2007) Phys Rev A 76:032502 (1–7)Google Scholar
  101. 101.
    Angulo JC, Antolín J, Sen KD (2008) Phys Lett A 372:670–674CrossRefGoogle Scholar
  102. 102.
    Angulo JC, Antolín J (2008) J Chem Phys 128:164109 (1–7)Google Scholar
  103. 103.
    Montgomery HE Jr, Sen KD (2008) Phys Lett A 372:2271–2273Google Scholar
  104. 104.
    Szabó JB, Sen KD, Nagy Á (2008) Phys Lett A 372:2428–2430CrossRefGoogle Scholar
  105. 105.
    Antolín J, Angulo JC (2009) Int J Quantum Chem 109:586–593CrossRefGoogle Scholar
  106. 106.
    Huang Z, Kais S (2005) Chem Phys Lett 413:1–5CrossRefGoogle Scholar
  107. 107.
    Huang S, Wang H, Kais S (2006) J Mod Opt 53:2543–2558CrossRefGoogle Scholar
  108. 108.
    Flores-Gallegos N, Esquivel ROJ (2008) Mex Chem Soc 52:19–30Google Scholar
  109. 109.
    Carrera E, Flores-Gallegos N, Esquivel RO (2009) J Comp Appl Math. doi: 10.1016/j.cam.2009.02.086
  110. 110.
    Shaik SS (2007) New J Chem 31:2015–2028CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Rodolfo O. Esquivel
    • 1
    • 2
    • 3
  • Nelson Flores-Gallegos
    • 1
  • Cristina Iuga
    • 1
  • Edmundo M. Carrera
    • 1
  • Juan Carlos Angulo
    • 2
    • 3
  • Juan Antolín
    • 3
    • 4
  1. 1.Departamento de QuímicaUniversidad Autónoma MetropolitanaMexico D.F.Mexico
  2. 2.Departamento de Física Atómica, Molecular y NuclearUniversidad de GranadaGranadaSpain
  3. 3.Instituto Carlos I de Física Teórica y ComputacionalUniversidad de GranadaGranadaSpain
  4. 4.Departamento de Física AplicadaEUITIZ, Universidad de ZaragozaZaragozaSpain

Personalised recommendations