Advertisement

Theoretical Chemistry Accounts

, Volume 125, Issue 3–6, pp 555–568 | Cite as

Current functional theory for multi-electron configuration

  • Jens N. Bang
  • Henrik Georg BohrEmail author
Regular Article

Abstract

The density functional theory (DFT) formalism is reformulated into a framework of currents so as to give the energy a parameter dependent behaviour, e.g., time. This “current” method is aimed at describing the transition of electrons from one orbital to another and especially from the ground state to an excited state and extended to the relativistic region in order to include magnetic fields which is relevant especially for heavy metallic compounds. The formalism leads to a set of coupled first order partial differential equations to describe the time evolution of atoms and molecules. The application of the method to ZnO and H2O to calculate the occupation probabilities of the orbitals lead to the results that compare favorably with those obtained from DFT. Furthermore, evolution equations for electrons in both atoms and molecules can be derived. Applications to specific examples of small molecules (being metallo-oxides and water) are mentioned at the end.

Keywords

Density functional theory Current DFT Continuity equations 

Notes

Acknowledgments

The staff at QuP Center and the Department of Physics at the Technical University of Denmark and especially Karl J. Jalkanen, FRSC, are acknowledged for helpful discussions and computer-aid. Furthermore, Professors Benny Lautrup and Holger Bech Nielsen are acknowledged for helpful critique.

References

  1. 1.
    Hohenberg P, Kohn W (1964) Phys Rev A 136:864CrossRefGoogle Scholar
  2. 2.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133CrossRefGoogle Scholar
  3. 3.
    Bohr HG, Jalkanen KJ, Frimand K, Elstner M, Suhai S (1999) Chem Phys 246:13CrossRefGoogle Scholar
  4. 4.
    Jalkanen K, Suhai S (1996) Chem Phys 208:81CrossRefGoogle Scholar
  5. 5.
    Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587CrossRefGoogle Scholar
  6. 6.
    Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001) Chem Phys 265:125CrossRefGoogle Scholar
  7. 7.
    Jalkanen KJ, Suhai S, Bohr HG (2009) Handbook of molecular biophysics, 7–66. Wiley-VCH, Weinheim, GermanyGoogle Scholar
  8. 8.
    Davidov AS (1965) Quantum mechanics. Pergamon Press, OxfordGoogle Scholar
  9. 9.
    Koostra F, de Boeis PL, van Leeuwen R, Snijders JG (2002) Reviews of modern quantum chemistry. In: Sen KD (ed) World Scientific, Singapore, pp 1155–1185Google Scholar
  10. 10.
    Harbola MK (2002) Reviews of modern quantum chemistry. In: Sen KD (ed) World Scientific, Singapore, pp 1226–1236Google Scholar
  11. 11.
    Sen KD (ed) (2002) Reviews of modern quantum chemistry. World Scientific, SingaporeGoogle Scholar
  12. 12.
    Bang JN, Bohr HG, da Providencia J (2009) Handbook of molecular biophysics. Wiley-VCH, Weinheim, Germany, pp 135–165Google Scholar
  13. 13.
    Bang JM, Hansteen JM (2002) Coulomb matrix elements: outline of a description of electron interactions in purely Coulombic systems. J Phys B At Mol Phys 35:3979CrossRefGoogle Scholar
  14. 14.
    Kamke E (1983) Differentialgleichungen. Teupner, StuttgarttGoogle Scholar
  15. 15.
    Shibuya T, Wulfman CE (1965) Proc Roy Soc A 286:376CrossRefGoogle Scholar
  16. 16.
    Liu YF, Lei YA, Zeng JY (1997) Phys Lett A 231:9–22CrossRefGoogle Scholar
  17. 17.
    Avery J, Shim R (2001) Int J Quantum Chem 83:1–10CrossRefGoogle Scholar
  18. 18.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD and Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision E.01. Gaussian, Inc., Wallingford, CTGoogle Scholar
  19. 19.
    Hameka H (2002) Reviews of modern quantum chemistry. In: Sen KD (ed) World Scientific, Singapore, pp 1237–1246Google Scholar
  20. 20.
    Vignale G, Rasolt M, Geldart DJW (1987) Phys Rev Lett 59:2360CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Niels Bohr InstituteUniversity of CopenhagenCopenhagen ØDenmark
  2. 2.Department of Physics, Quantum Protein (QuP) CenterTechnical University of Denmark (DTU)LyngbyDenmark

Personalised recommendations