Theoretical Chemistry Accounts

, 124:395 | Cite as

Electronic structure and optical properties of chelating heteroatomic conjugated molecules: a SAC-CI study

Regular Article

Abstract

The electronic structure and optical properties of 13 chelating heteroatomic conjugated molecules such as pyridine, benzoxazole, and benzothiazole derivatives, which are used as C–N ligands in organometallic compounds, have been investigated. The geometries of the ground and first excited states were obtained by the DFT and CIS methods, respectively, followed by the SAC-CI calculations of the transition energies for absorption and emission. For six compounds whose experimental data are available, the SAC-CI calculations reproduced the experimental values satisfactorily with deviations of less than 0.3 eV for absorption and 0.1 eV for emission except for benzoxazoles. For other molecules, the theoretical absorption and emission spectra were predicted. The lowest ππ* excited-state geometries was calculated to be planar for most of the molecules with two or three conjugated rings connected by single bond. The geometry change due to the ππ* excitation was qualitatively interpreted by electrostatic force theory based on SAC/SAC-CI electron density difference. The excitations are relatively localized in the central region and in the lowest ππ* excited state, the inter-ring single bond shows large change, with a contraction of 0.05–0.09 Å. The present calculations provide reliable information regarding the energy levels of these chelating heteroatomic conjugated compounds.

Keywords

Ab initio SAC-CI Heteroatomic conjugated molecules Optical properties Electronic structure 

Supplementary material

214_2009_629_MOESM1_ESM.pdf (130 kb)
Supplementary material 1 (PDF 130 kb)

References

  1. 1.
    Kalle C (1962) Brirtish Patent 895001Google Scholar
  2. 2.
    Mori A, Sekiguchi A, Masui K, Shimada T, Horie M, Osakada K, Kawamoto M, Ikeda T (2003) J Am Chem Soc 102:1700CrossRefGoogle Scholar
  3. 3.
    Williams DL, Heller A (1970) J Phys Chem 74:4473CrossRefGoogle Scholar
  4. 4.
    Barbara PF, Brus LE, Rentzepis PM (1980) J Am Chem Soc 102:5631CrossRefGoogle Scholar
  5. 5.
    Mishra AK, Dogra SK (1985) Bull Chem Soc Jpn 58:3587CrossRefGoogle Scholar
  6. 6.
    Becker RS, Lenolele C, Zein A (1987) J Phys Chem 91:3509CrossRefGoogle Scholar
  7. 7.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Kwong R, Tsyba I, Bortz M, Mui B, Bau R, Thompson ME (2001) Inorg Chem 40:1704CrossRefGoogle Scholar
  8. 8.
    Lamansky S, Djurovich P, Murphy D, Abdel-Razzaq F, Lee HF, Adachi C, Burrows PE, Forrest SR, Thompson ME (2001) J Am Chem Soc 123:4304CrossRefGoogle Scholar
  9. 9.
    Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Inorg Chem 41:3055CrossRefGoogle Scholar
  10. 10.
    Segal G, Pople JA (1966) J Chem Phys 44:3289CrossRefGoogle Scholar
  11. 11.
    Casida ME, Jamorski C, Casida KC, Salahub DR (1998) J Chem Phys 108:4439CrossRefGoogle Scholar
  12. 12.
    Nakatsuji H, Hirao K (1978) J Chem Phys 68:2053CrossRefGoogle Scholar
  13. 13.
    Nakatsuji H (1978) Chem Phys Lett 59:362CrossRefGoogle Scholar
  14. 14.
    Nakatsuji H (1979) Chem Phys Lett 67:329CrossRefGoogle Scholar
  15. 15.
    Nakatsuji H (1992) Acta Chim Acad Sci Hung 129:719Google Scholar
  16. 16.
    Nakatsuji H, Kitao O, Yonezawa T (1985) J Chem Phys 83:723CrossRefGoogle Scholar
  17. 17.
    Wan J, Hada M, Ehara M, Nakatsuji H (2001) J Chem Phys 114:5117CrossRefGoogle Scholar
  18. 18.
    Wan J, Meller J, Hada M, Ehara M, Nakatsuji H (2000) J Chem Phys 113:7853CrossRefGoogle Scholar
  19. 19.
    Poolmee P, Ehara M, Hannongbua S, Nakatsuji H (2005) Polymer 46:6474CrossRefGoogle Scholar
  20. 20.
    Saha B, Ehara M, Nakatsuji H (2007) J Phys Chem A 111:5473CrossRefGoogle Scholar
  21. 21.
    Fukuda R, Nakatsuji H (2008) J Chem Phys 128:094105CrossRefGoogle Scholar
  22. 22.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  23. 23.
    Becke AD (1993) J Chem Phys 98:1372CrossRefGoogle Scholar
  24. 24.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  25. 25.
    Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:640Google Scholar
  26. 26.
    McLean AD, Chandler GS (1980) J Chem Phys 72:5639CrossRefGoogle Scholar
  27. 27.
    Foresman JB, Head-Gordon M, Pople JA (1992) J Phys Chem 96:135CrossRefGoogle Scholar
  28. 28.
    Dunning TH Jr, Hay PJ (1976) In: Schaefer HF III (ed) Modern theoretical chemistry, vol 2. Plenum, New YorkGoogle Scholar
  29. 29.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Chesseman JR et al (2004) Gaussian 03. Gaussian Inc., WallingfordGoogle Scholar
  30. 30.
    Nakatsuji H (1973) J Am Chem Soc 95:345CrossRefGoogle Scholar
  31. 31.
    Nakatsuji H, Koga T (1981) The force concept in chemistry. Van Nostrand Reinhold, New YorkGoogle Scholar
  32. 32.
    Krumholz P (1951) J Am Chem Soc 73:3487CrossRefGoogle Scholar
  33. 33.
    Pohlers G, Virdee S, Scaiano JC, Sinta R (1996) Chem Matter 8:2654CrossRefGoogle Scholar
  34. 34.
    Burrell GJ, Hurtubise RJ (1988) Anal Chem 60:2178CrossRefGoogle Scholar
  35. 35.
    Drefahl G, Engelmann U (1960) Chem Ber 93:492CrossRefGoogle Scholar
  36. 36.
    Gruzinskii VV, Danilova VI, Kopylova TN, Maier VG, Shalaev VK (1981) Sov J Quantum Electron 11:1029CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Division of Chemistry and Biochemistry, School of Physical and Mathematical SciencesNanyang Technological UniversitySingaporeSingapore
  2. 2.Institute for Molecular ScienceOkazakiJapan
  3. 3.JST-CRESTTokyoJapan

Personalised recommendations