Theoretical Chemistry Accounts

, 124:345 | Cite as

Structure, stability and electronic property of the gold-doped germanium clusters: AuGen (n = 2–13)

Regular Article

Abstract

The structure, stability and electronic property of the AuGen (n = 2–13) clusters with different spin configurations are systematically investigated with density-functional theory approach at UB3LYP/LanL2DZ level. In examining the lowest energy structures, it is found that the growth behaviors for the small-sized AuGen (n = 2–9) clusters and relatively large-sized AuGen (n = 10–13) clusters are different. As the number of Ge atom increases, the Au atom would gradually move from convex to surface and to interior sites. For the most stable structures of AuGen (n = 10–13) clusters, the Au atom would be completely surrounded by the Ge atoms to form Au-encapsulated Gen cages. Natural population analysis shows that the charges always transfer from the Au atom to the Gen framework except for the AuGe2 cluster. This indicates that the Au atom acts as electron donor even the 5d orbitals of the Au atom are not significantly involved in chemical bonding. The analyses of the average atomic binding energies as well as the dissociation energies and the second-order differences of total energy show that the AuGen clusters with n = 5, 9 and 12 are more stable than their neighboring ones, in which the bicapped pentagonal prism AuGe12 in D2d symmetry is most stable. The highest occupied molecular orbital–lowest unoccupied molecular orbital gaps are explored to be in the region of semiconductors and the more stable clusters have slightly smaller gaps. It could be expected that the stable clusters might be considered as the novel building blocks in practical applications, e.g., the cluster-assembled semiconductors or optoelectronic material.

Keywords

AuGen cluster Structure Stability Electronic property DFT 

References

  1. 1.
    Torres MB, Fernandez EM, Balbas LC (2007) Phys Rev B 75:205425CrossRefGoogle Scholar
  2. 2.
    Guo LJ, Liu X, Zhao GF, Luo YH (2007) J Chem Phys 126:234704CrossRefGoogle Scholar
  3. 3.
    Kawamura H, Kumar V, Kawazoe Y (2004) Phys Rev B 70:245433CrossRefGoogle Scholar
  4. 4.
    Chuang FC, Hsieh YY, Hsu CC, Albao MA (2007) J Chem Phys 127:144313CrossRefGoogle Scholar
  5. 5.
    Peng Q, Shen JJ (2008) J Chem Phys 128:084711CrossRefGoogle Scholar
  6. 6.
    Ma L, Zhao JJ, Wang JG, Lu QL, Zhu LZ, Wang GH (2005) Chem Phys Lett 411:279CrossRefGoogle Scholar
  7. 7.
    Wang J, Ma QM, Xie Z, Liu Y, Li YC (2007) Phys Rev B 76:035406CrossRefGoogle Scholar
  8. 8.
    Wang JG, Zhao JJ, Ma L, Wang BL, Wang GH (2007) Phys Lett A 367:335CrossRefGoogle Scholar
  9. 9.
    Zhao WJ, Yang Z, Yan YL, Lei XL, Ge GX, Wang QL, Luo YH (2007) Acta Phys Sin 56:2596Google Scholar
  10. 10.
    Ma L, Zhao JJ, Wang JG, Wang BL, Lu QL, Wang GH (2006) Phys Rev B 73:125439CrossRefGoogle Scholar
  11. 11.
    Hou XJ, Gopakumar G, Lievens P, Nguyen MT (2007) J Phys Chem A 111:13544CrossRefGoogle Scholar
  12. 12.
    Han JG, Hagelberg F (2009) J Comput Theory Nanosci 6:257CrossRefGoogle Scholar
  13. 13.
    Han JG, Xiao CY, Hagelberg F (2002) Struct Chem 13:173CrossRefGoogle Scholar
  14. 14.
    Zhao WJ, Wang YX (2008) Chem Phys 352:291CrossRefGoogle Scholar
  15. 15.
    Zhao WJ, Wang YX (2009) J Mol Struct (Theochem) 901:18CrossRefGoogle Scholar
  16. 16.
    Wang J, Han JG (2006) J Phys Chem B 110:7820CrossRefGoogle Scholar
  17. 17.
    Wang J, Han JG (2005) J Chem Phys 123:244303CrossRefGoogle Scholar
  18. 18.
    Wang J, Han JG (2007) Chem Phys 342:253Google Scholar
  19. 19.
    Wang J, Han JG (2006) J Phys Chem A 110:12670CrossRefGoogle Scholar
  20. 20.
    Jing Q, Tian FY, Wang YX (2008) J Chem Phys 128:124319CrossRefGoogle Scholar
  21. 21.
    Wang J, Han JG (2008) J Phys Chem A 112:3224CrossRefGoogle Scholar
  22. 22.
    Lu J, Nagase S (2003) Chem Phys Lett 372:394CrossRefGoogle Scholar
  23. 23.
    Zhang X, Li GL, Gao Z (2001) Rapid Commun Mass Spectrom 15:1573CrossRefGoogle Scholar
  24. 24.
    Kumar V, Kawazoe Y (2003) Appl Phys Lett 83:2677CrossRefGoogle Scholar
  25. 25.
    Kumar V, Singh AK, Kawazoe Y (2004) Nano Lett 4:677CrossRefGoogle Scholar
  26. 26.
    Kumar V, Kawazoe Y (2002) Phys Rev Lett 88:235504CrossRefGoogle Scholar
  27. 27.
    Pyykkö P (1988) Chem Rev 88:563CrossRefGoogle Scholar
  28. 28.
    Bishes GA, Morse MD (1991) J Chem Phys 95:5646CrossRefGoogle Scholar
  29. 29.
    Negishi Y, Nakamura Y, Nakajima A, Kaya K (2001) J Chem Phys 115:3657CrossRefGoogle Scholar
  30. 30.
    Bonačić-Koutecký V, Burda J, Mitrić R, Ge M, Zampella G, Fantucci P (2002) J Chem Phys 117:3120CrossRefGoogle Scholar
  31. 31.
    Yuan DW, Wang Y, Zeng Z (2005) J Chem Phys 122:114310CrossRefGoogle Scholar
  32. 32.
    Zorriasatein S, Joshi K, Kanhere DG (2008) J Chem Phys 128:184314CrossRefGoogle Scholar
  33. 33.
    Fa W, Dong JM (2008) J Chem Phys 128:144307CrossRefGoogle Scholar
  34. 34.
    Becke AD (1986) J Chem Phys 84:4524CrossRefGoogle Scholar
  35. 35.
    Becke AD (1988) J Chem Phys 88:2547CrossRefGoogle Scholar
  36. 36.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785CrossRefGoogle Scholar
  37. 37.
    Becke AD (1988) J Chem Phys 88:1053CrossRefGoogle Scholar
  38. 38.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  39. 39.
    Kohn W, Sham LJ (1965) Phys Rev A 140:1133CrossRefGoogle Scholar
  40. 40.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270CrossRefGoogle Scholar
  41. 41.
    Wadt WR, Hay PJ (1985) J Chem Phys 82:284CrossRefGoogle Scholar
  42. 42.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299CrossRefGoogle Scholar
  43. 43.
    Zhao LZ, Lu WC, Wei Q, Zang QJ, Wang CZ, Ho KM (2008) Chem Phys Lett 455:225CrossRefGoogle Scholar
  44. 44.
    Gaussian 03, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski J, Ayala WPY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian Inc., PittsburghGoogle Scholar
  45. 45.
    Xu WG, Zhao J, Li QS, Xie YM, Schaefer HFIII (2004) Mol Phys 102:579CrossRefGoogle Scholar
  46. 46.
    Shim I, Sai Baba M, Gingerich KA (2002) Chem Phys 277:9CrossRefGoogle Scholar
  47. 47.
    Arnold CC, Xu C, Burton GR, Neumark DM (1995) J Chem Phys 102:6982CrossRefGoogle Scholar
  48. 48.
    Burton GR, Xu C, Neumark DM (1996) Surf Rev Lett 3:383CrossRefGoogle Scholar
  49. 49.
    Burton GR, Xu C, Arnold CC, Neumark DM (1996) J Chem Phys 104:2757CrossRefGoogle Scholar
  50. 50.
    Huber KP, Herzberg G (1979) Constants of diatomic molecules. Van Nostrand Reinhold, New YorkGoogle Scholar
  51. 51.
    Pershina V, Anton J, Fricke B (2007) J Chem Phys 127:134310CrossRefGoogle Scholar
  52. 52.
    Kingcade JE Jr, Choudary UV, Gingerich KA (1979) Inorg Chem 18:3094CrossRefGoogle Scholar
  53. 53.
    Balasubramanian K, Liao MZ (1987) J Chem Phys 86:5587CrossRefGoogle Scholar
  54. 54.
    Guo JJ, Yang JX, Die D (2008) Phys B 403:4033CrossRefGoogle Scholar
  55. 55.
    Lide DR (ed in Chief) (1996–1997) CRC handbook of chemistry and physics, 77th edn. CRC, Boca RatonGoogle Scholar
  56. 56.
    Zhang PX, Zhao YF, Hao FY, Song XD, Zhang GH, Wang Y (2009) J Mol Struct (Theochem) 899:111CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.School of Natural and Applied SciencesNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.Department of Chemistry and Chemical EngineeringWeinan Teachers UniversityWeinanPeople’s Republic of China

Personalised recommendations