Theoretical Chemistry Accounts

, Volume 126, Issue 3–4, pp 151–163 | Cite as

Multicentered effective group potentials: ligand-field effects in organometallic clusters and dynamical study of chemical reactivity

  • Christophe Raynaud
  • Iker del Rosal
  • Franck Jolibois
  • Laurent Maron
  • Romuald PoteauEmail author
Regular Article


A new multicentered effective group potential (EGP) is obtained for η6-benzene. Applications on \([\hbox{Ru}_{4}(\hbox{H})_{4}(\hbox{C}_{6}\hbox{H}_{6})_{4}]^{n+}\) clusters (n = 0 or 2) are in excellent agreement with reference DFT studies in terms of geometries, energies and electronic structures. In particular, the small singlet–triplet energy difference (3.8 kcal mol−1) in [Ru4(H)4(C6H6)4]2+ is very well reproduced. This new EGP is nevertheless not free from the limitations associated to this first generation of molecular pseudopotentials. A cautious analysis of the nature and exact role of this EGP is made, which provides new directions for the elaboration of the next generation of EGPs. In addition, the η5-cyclopentadienyl EGP has been used to perform a constrained dynamical simulation for the reaction of Cp2LaH with H2. The energy conservation during the simulation as well as the activation barrier extracted from the simulation clearly demonstrate the good behavior of this EGP in the context of molecular dynamics. Anharmonic effects on this reaction are underlined, further demonstrating the high accuracy of the potential energy surface obtained with EGPs. From a more general point of view, such EGPs are expected to provide accurate albeit low-cost ligand-field effects in organometallic clusters or nanoparticles and to allow dynamical studies at the surface of such compounds.


Effective group potentials Ab initio molecular dynamics Organometallic clusters and nanoparticles Chemical reactivity 



We thank the CALcul en MIdi-Pyrénées (CALMIP) for generous allocations of computer time. Laurent Maron is member of the Institut Universitaire de France (IUF). Financial support by the CNRS and the ANR (SIDERUS project, ANR-08-BLAN-0010-01 and ANR-08-BLAN-0010-02) is gratefully acknowledged. This work is dedicated to the memory of Dr Jean-Pierre Daudey, who was affectionately called by us “Ze Guru”. EGP extractions and applications for benzene, as well as the corresponding sections of this article were essentially achieved during a wonderful week in the département of Ardèche, in April 2009. Je me souviens [76, 77] d’une fameuse fondue au LPQ autour de la table à saucissons. Je me souviens des rires et des doutes existentiels et scientifiques. Je me souviens du xylophone à roulettes d’Emilie que tu faisais tintinabuler pour nous convier à prendre le thé. Je me souviens de la trousse Babar qui t’accompagnait à chaque réunion. Je me souviens des impulsions scientifiques décisives que tu as données à ces travaux, après tant d’autres. Je me souviens de ta mélancolie.


  1. 1.
    Schmid G (ed) (2004) Nanoparticles. From theory to application. Wiley, WeinheimGoogle Scholar
  2. 2.
    Calvo F, Carré A (2006) Nanotechnology 17:1292–1299CrossRefGoogle Scholar
  3. 3.
    del Rosal I, Jolibois F, Maron L, Philippot K, Chaudret B, Poteau R (2009) Dalton Trans 2142–2156Google Scholar
  4. 4.
    Pery T, Pelzer K, Buntkowsky G, Philippot K, Limbach HH, Chaudret B (2005) Chem Phys Chem 6:605–607Google Scholar
  5. 5.
    Schröder F, Esken D, Cokoja M, vanden Berg MWE, Lebedev OI, van Tendeloo G, Walaszek B, Buntkowsky G, Limbach H-H, Chaudret B, Fischer RA (2008) J Am Chem Soc 130:6119–6130CrossRefGoogle Scholar
  6. 6.
    Walaszek B, Adamczyk A, Pery T, Yeping X, Gutmann T, de S. Amadeu N, Ulrich S, Breitzke H, Vieth HM, Sabo-Etienne S, Chaudret B, Limbach H-H, Buntkowsky G (2008) J Am Chem Soc 130:17502–17508CrossRefGoogle Scholar
  7. 7.
    del Rosal I, Maron L, Poteau R, Jolibois F (2008) Dalton Trans 3959–3970Google Scholar
  8. 8.
    del Rosal I, Gutman T, Maron L, Jolibois F, Philippot K, Chaudret B, Wakaszek B, Limbach HH, Poteau R, Buntkowsky G (2009) Phys Chem Chem Phys 11:5657–5663CrossRefGoogle Scholar
  9. 9.
    Buntkowsky G, Limbach HH (2006) J Low Temp Phys 143:55–114CrossRefGoogle Scholar
  10. 10.
    Poteau R, Maynau D, Spiegelmann F (1993) Chem Phys 175:289–297CrossRefGoogle Scholar
  11. 11.
    Raynaud C, Maron L, Daudey J-P, Jolibois F (2006) ChemPhysChem 7:407–413Google Scholar
  12. 12.
    Raynaud C, Poteau R, Maron L, Jolibois F (2006) J Mol Struct Theochem 771:43–50CrossRefGoogle Scholar
  13. 13.
    Raynaud C, Maron L, Daudey J-P, Jolibois F (2004) Phys Chem Chem Phys 6:4226–4232CrossRefGoogle Scholar
  14. 14.
    Raynaud C, Daudey J-P, Jolibois F, Maron L (2006) J Phys Chem A 110:101–105CrossRefGoogle Scholar
  15. 15.
    Durand P, Malrieu J-P (1987) Advances in chemical physics: ab initio methods in quantum chemistry, vol LXVII, part I. Wiley, New York, pp 321–412Google Scholar
  16. 16.
    Poteau R, Ortega I, Alary F, Ramirez Solis A, Barthelat J-C, Daudey J-P (2001) J Phys Chem A 105:198–205CrossRefGoogle Scholar
  17. 17.
    Poteau R, Alary F, el Makarim HA, Heully J-L, Barthelat J-C, Daudey J-P (2001) J Phys Chem A 105:206–214CrossRefGoogle Scholar
  18. 18.
    Heully J-L, Poteau R, Berasaluce S, Alary F (2002) J Chem Phys 116:4829–4836CrossRefGoogle Scholar
  19. 19.
    Alary F, Heully J-L, Poteau R, Maron L, Trinquier G, Daudey J-P (2003) J Am Chem Soc 125:11051–11061CrossRefGoogle Scholar
  20. 20.
    Bessac F, Alary F, Poteau R, Heully J-L, Daudey J-P (2003) J Phys Chem A 107:9393–9402CrossRefGoogle Scholar
  21. 21.
    Bessac F, Carissan Y, Alary F, Heully J-L, Daudey J-P, Poteau R (2003) J Mol Struct Theochem 632:43–59CrossRefGoogle Scholar
  22. 22.
    Carissan Y, Bessac F, Alary F, Heully J-L, Poteau R (2006) Int J Quant Chem 106:727–733CrossRefGoogle Scholar
  23. 23.
    Slavíček P, Martínez TJ (2006) J Chem Phys 124:084107–084110CrossRefGoogle Scholar
  24. 24.
    Lewin JL, Cramer CJ (2008) J Phys Chem A 112:12754–12760CrossRefGoogle Scholar
  25. 25.
    Albright TA, Burdett JK, Whangbo M-H (1985) Orbital interactions in chemistry. Wiley, New YorkGoogle Scholar
  26. 26.
    Durand P, Barthelat J-C (1975) Theor Chim Acta 38:283–302CrossRefGoogle Scholar
  27. 27.
    Stevens WJ, Basch H, Krauss M (1984) J Chem Phys 81:6026–6033CrossRefGoogle Scholar
  28. 28.
    Hoffmann R (1982) Angew Chem Int ed Eng 21:711–800CrossRefGoogle Scholar
  29. 29.
    Pelissier M, Komiha N, Daudey J-P (1988) J Comp Chem 9:298–302CrossRefGoogle Scholar
  30. 30.
    Nicolas G, Durand Ph (1980) J Chem Phys 72:453–463CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 (Revision B.05)Google Scholar
  32. 32.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872CrossRefGoogle Scholar
  33. 33.
    Zhang Y, Lee T-S, Yang W (1999) J Chem Phys 110:46–54CrossRefGoogle Scholar
  34. 34.
    Dilabio GA, Hurley MM, Christiansen PA (2002) J Chem Phys 116:9578–9584CrossRefGoogle Scholar
  35. 35.
    Meister G, Rheinwald G, Stoeckli-Evans H, Süss-Fink G (1994) J Chem Soc Dalton Trans 3215–3223Google Scholar
  36. 36.
    Mingos DMP, Wales DJ (1990) Introduction to cluster chemistry. Prentice-Hall, Englewood CliffsGoogle Scholar
  37. 37.
    Fox MA, Wade K (2003) Pure Appl Chem 75:1315–1323CrossRefGoogle Scholar
  38. 38.
    Gautier R, Chérioux F, Süss-Fink G, Saillard J-Y (2003) Inorg Chem 42:8278–8282CrossRefGoogle Scholar
  39. 39.
    McQuarrie DA (2000) Statistical mechanics, 2nd edn. University Science Books, SausalitoGoogle Scholar
  40. 40.
    Barone V (2004) J Chem Phys 120:3059–3065CrossRefGoogle Scholar
  41. 41.
    Hoover WG (1985) Phys Rev A 31:1695–1697CrossRefGoogle Scholar
  42. 42.
    Sprik M, Ciccotti G (1998) J Chem Phys 109:7737–7744CrossRefGoogle Scholar
  43. 43.
    Car R, Parrinello M (1985) Phys Rev Lett 55:2471–2474CrossRefGoogle Scholar
  44. 44.
    Bolton K, Hase WL, Peslherbe GH (1998) Direct Dynamics of reactive systems. In: Modern methods for multidimensional dynamics computation in chemistry. World Scientific, Singapore, pp 143–189Google Scholar
  45. 45.
    Millam JM, Bakken V, Chen W, Hase WL, Schlegel HB (1999) J Chem Phys 111:3800–3805CrossRefGoogle Scholar
  46. 46.
    Li X, Millam JM, Schlegel HB (2000) J Chem Phys 113:10062–10067CrossRefGoogle Scholar
  47. 47.
    Marx D, Hutter J (2000) Ab initio molecular dynamics: theory and implementation. In: Modern methods and algorithms of quantum chemistry. John von Neumann Institute for Computing, Forschungszentrum Jülich, Jülich, pp 329–477Google Scholar
  48. 48.
    Hartke B, Carter EA (1992) Chem Phys Lett 189:358–362CrossRefGoogle Scholar
  49. 49.
    Radeke MR, Carter EA (1997) Annu Rev Phys Chem 48:243–270CrossRefGoogle Scholar
  50. 50.
    Nosé S (1984) J Chem Phys 81:511–519CrossRefGoogle Scholar
  51. 51.
    Raynaud C, Maron L, Jolibois F, Daudey J-P, Esteves PM, Ramírez-Solís A (2005) Chem Phys Lett 414:161–165CrossRefGoogle Scholar
  52. 52.
    Jolibois F, Maron L, Ramírez-Solís A (2007) Chem Phys Lett 435:34–38CrossRefGoogle Scholar
  53. 53.
    Jolibois F, Maron L, Ramírez-Solís A (2009) J Mol Struct Theochem 899:9–17CrossRefGoogle Scholar
  54. 54.
    Raynaud C, Daudey J-P, Maron L, Jolibois F (2005) J Phys Chem A 109:9646–9652CrossRefGoogle Scholar
  55. 55.
    Watson PL, Parshall GW (1985) Acc Chem Res 18:51–56CrossRefGoogle Scholar
  56. 56.
    Ziegler T, Folga E, Berces A (1993) J Am Chem Soc 115:636–646CrossRefGoogle Scholar
  57. 57.
    Maron L, Perrin L, Eisenstein O (2002) J Chem Soc Dalton Trans 534–539Google Scholar
  58. 58.
    Perrin L, Maron L, Eisenstein O (2002) Inorg Chem 41:4355–4362CrossRefGoogle Scholar
  59. 59.
    Maron L, Werkema EL, Perrin L, Eisenstein O, Andersen RA (2005) J Am Chem Soc 127:279–292CrossRefGoogle Scholar
  60. 60.
    Werkema EL, Messines E, Perrin L, Maron L, Eisenstein O, Andersen RA (2005) J Am Chem Soc 127:7781–7795CrossRefGoogle Scholar
  61. 61.
    Maron L, Eisenstein O, Alary F, Poteau R (2002) J Phys Chem A 106:1797–1801CrossRefGoogle Scholar
  62. 62.
    Frenkel D, Smit B (1996) Understanding molecular simulation— from algorithms to applications. Academic Press, San DiegoGoogle Scholar
  63. 63.
    Torrie GM, Valleau J-P (1974) Chem Phys Lett 28:578–581CrossRefGoogle Scholar
  64. 64.
    Torrie GM, Valleau J-P (1977) J Comp Phys 23:187–199CrossRefGoogle Scholar
  65. 65.
    Laio A, Parrinello M (2002) Proc Natl Acad Sci USA 99:12562–12566CrossRefGoogle Scholar
  66. 66.
    Iannuzzi M, Laio A, Parrinello M (2003) Phys Rev Lett 90:238302CrossRefGoogle Scholar
  67. 67.
    Carter EA, Ciccotti G, Hynes JT, Kapral R (1989) Chem Phys Lett 156:472–477CrossRefGoogle Scholar
  68. 68.
    Paci E, Ciccotti G, Ferrario G, Kapral R (1991) Chem Phys Lett 176:581–587CrossRefGoogle Scholar
  69. 69.
    den Otter WK, Briels WJ (1998) J Chem Phys 109:4139–4146CrossRefGoogle Scholar
  70. 70.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  71. 71.
    Burke K, Perdew JP, Wang Y (1998) Electronic density functional theory: recent progress and new directions. Plenum, New YorkGoogle Scholar
  72. 72.
    Dolg M, Stoll H, Savin A, Preuss H (1989) Theor Chim Acta 75:173–194CrossRefGoogle Scholar
  73. 73.
    Hariharan PC, Pople JA (1973) Theor Chem Acc 28:213–222CrossRefGoogle Scholar
  74. 74.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98 (Revision A.11)Google Scholar
  75. 75.
    Verlet L (1967) Phys Rev 159:98–103CrossRefGoogle Scholar
  76. 76.
    Perec G (1978) Je me souviens, Les Choses Communes I. Hachette (collection P.O.L.), Paris, FranceGoogle Scholar
  77. 77.
    Brasseur R (2003) Je me souviens encore mieux de Je me souviens: Notes pour Je me souviens de Georges Perec á l’usage des générations oublieuses et de celles qui n’ont jamais su. Castrol Astral, Pantin, FranceGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Christophe Raynaud
    • 3
  • Iker del Rosal
    • 1
    • 2
  • Franck Jolibois
    • 1
    • 2
  • Laurent Maron
    • 1
    • 2
  • Romuald Poteau
    • 1
    • 2
    Email author
  1. 1.Université de Toulouse, INSA, UPS, LPCNO, IRSAMCToulouseFrance
  2. 2.CNRS, UMR 5215 (IRSAMC)ToulouseFrance
  3. 3.Institut Charles Gerhardt, CNRS 5253Université Montpellier 2MontpellierFrance

Personalised recommendations