Theoretical Chemistry Accounts

, Volume 124, Issue 3–4, pp 187–195 | Cite as

A theoretical study of diborenes HLB=BLH for L=CO, NH3, OH2, PH3, SH2, ClH: structures, energies, and spin–spin coupling constants

  • Ibon Alkorta
  • Janet E. Del Bene
  • José Elguero
  • Otilia Mó
  • Manuel Yáñez
Regular Article

Abstract

Ab initio calculations were carried out to investigate the structures, binding energies, bonding, and NMR spin–spin coupling constants of complexes HLB=BLH, for L=CO, NH3, OH2, PH3, SH2, and ClH. Both B–B and B–H bonds lengthen on complex formation relative to singlet HBBH, and except for L=CO, the B–B bonds are double bonds. The order of stability of the trans isomers correlates with the ordering of ligands in the spectrochemical series of ligand field theory. The trans isomer is always more stable than the corresponding cis. Inverse correlations are found between 1J(B–B) and 1J(B–H) and the corresponding B–B and B–H distances. For the trans isomers, 1J(B–B) appears to be related to the ordering of ligands in the spectrochemical series, while 1J(B–H) is related to the protonation energy of the ligand L.

Keywords

Diborenes Spectrochemical series AIM ELF NMR coupling constants 

Supplementary material

214_2009_599_MOESM1_ESM.doc (150 kb)
(DOC 150 kb)

References

  1. 1.
    Greenwood NN, Earnshaw A (1984) Chemistry of the elements. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Davidson MG, Wade K, Marder TB, Hughes AK (2000) Contemporary boron chemistry. Royal Soc Chem CambridgeGoogle Scholar
  3. 3.
    Marder TB, Lin Z (2008) Contemporary metal boron chemistry I. Borylenes, Boryls, Borane σ-complexes, and Borohydrides, SpringerGoogle Scholar
  4. 4.
    Del Bene JE, Elguero J, Alkorta I, Yáñez M, Mó O (2006) J Phys Chem A 110:9959–9966CrossRefGoogle Scholar
  5. 5.
    Mó O, Yáñez M, Martín-Pendás A, Del Bene JE, Alkorta I, Elguero J (2007) Phys Chem Chem Phys 9:3970–3977Google Scholar
  6. 6.
    Del Bene JE, Mó O, Yáñez M (2009) Croat Chem Acta (in press)Google Scholar
  7. 7.
    Segawa Y, Yamashita M, Nozaki K (2006) Science 134:113–115CrossRefGoogle Scholar
  8. 8.
    Del Bene JE, Alkorta I, Elguero J, Yáñez M, Mó O (2007) J Phys Chem A 111:419–421CrossRefGoogle Scholar
  9. 9.
    Zhou M, Tsumori N, Li Z, Fan K, Andrews L, Xu Q (2002) J Am Chem Soc 124:12936–12937CrossRefGoogle Scholar
  10. 10.
    Wang W, Quillian B, Wei P, Wannere CS, Xie Y, King RB, Schaefer HFIII, Schleyer PVR, Robinson GH (2007) J Am Chem Soc 129:12412–12413CrossRefGoogle Scholar
  11. 11.
    Scheschkewitz D (2008) Angew Chem Int Ed 47:1995–1997CrossRefGoogle Scholar
  12. 12.
    Li SD, Zhai HJ, Wang LS (2008) J Am Chem Soc 130:2573–2579CrossRefGoogle Scholar
  13. 13.
    Wang Y, Quillian B, Wei P, Xie Y, Wannere CS, King RB, Schaefer HF, Schleyer PVR, Robinson GH (2008) J Am Chem Soc 130:3298–3299CrossRefGoogle Scholar
  14. 14.
    Rivard E, Power PP (2007) Inorg Chem 46:10047–10064CrossRefGoogle Scholar
  15. 15.
    Power PP (1999) Chem Rev 99:3463–3504CrossRefGoogle Scholar
  16. 16.
    Noth H, Knizek J, Ponikwar W (1999) Eur J Inorg Chem 11:1931–1937CrossRefGoogle Scholar
  17. 17.
    Berndt A (1993) Angew Chem Int Ed 32:985–1009CrossRefGoogle Scholar
  18. 18.
    Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789CrossRefGoogle Scholar
  19. 19.
    Becke AD (1993) J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  20. 20.
    Frisch MJ, Pople JA, Krishnan R, Binkley JS (1984) J Chem Phys 80:3265–3269CrossRefGoogle Scholar
  21. 21.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adao C, Jaramill, J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03. Gaussian, Inc., PittsburghGoogle Scholar
  22. 22.
    Pople JA, Binkley JS, Seeger R (1976) Int J Quantum Chem Quantum Chem Symp 10:1–19CrossRefGoogle Scholar
  23. 23.
    Krishnan R, Pople JA (1978) Int J Quantum Chem 14:91–100CrossRefGoogle Scholar
  24. 24.
    Bartlett RJ, Silver DM (1975) J Chem Phys 62:3258–3268CrossRefGoogle Scholar
  25. 25.
    Bartlett RJ, Purvis DG (1978) Int J Quantum Chem 14:561–581CrossRefGoogle Scholar
  26. 26.
    Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  27. 27.
    Harihara PC, Pople JA (1973) Theor Chim Acta 238:213–222CrossRefGoogle Scholar
  28. 28.
    Spitznagel GW, Clark T, Chandrasekhar J, Schleyer PVR (1982) J Comput Chem 3:363–371CrossRefGoogle Scholar
  29. 29.
    Clark T, Chandrasekhar J, Spitznagel GW, Schleyer PVR (1983) J Comput Chem 4:294–301CrossRefGoogle Scholar
  30. 30.
    Bader RFA (1990) In: Halpen J, Green MLH (eds) Atoms in molecules: a quantum theory; the international series of monographs of chemistry. Clarendon Press, OxfordGoogle Scholar
  31. 31.
    Bieger-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317–328CrossRefGoogle Scholar
  32. 32.
    Cramer D, Kraka E (1984) Croat Chem Acta 57:1259–1281Google Scholar
  33. 33.
    Becke AD, Edgecombe KE (1990) J Chem Phys 92:5397–5403CrossRefGoogle Scholar
  34. 34.
    Silvi B, Savin A (1994) Nature 371:683–686CrossRefGoogle Scholar
  35. 35.
    Noury S, Krokidis X, Fuster F, Silvi B (1999) ToPMoD Package, Universite Pierre et Marie Curie, 1997; Comp Chem 23:597–604Google Scholar
  36. 36.
    Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926CrossRefGoogle Scholar
  37. 37.
    Perera SA, Sekino H, Bartlett RJ (1994) J Chem Phys 101:2186–2191CrossRefGoogle Scholar
  38. 38.
    Perera SA, Nooijen M, Bartlett RJ (1996) J Chem Phys 104:3290–3305CrossRefGoogle Scholar
  39. 39.
    Perera SA, Bartlett RJ (1995) J Am Chem Soc 117:8476–8477CrossRefGoogle Scholar
  40. 40.
    Perera SA, Bartlett RJ (1996) J Am Chem Soc 118:7849–7850CrossRefGoogle Scholar
  41. 41.
    Schäfer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  42. 42.
    Dunning TH Jr (1989) J Chem Phys 90:1007–1023CrossRefGoogle Scholar
  43. 43.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572–4585CrossRefGoogle Scholar
  44. 44.
    Kirpekar S, Jensen HJA, Oddershede J (1994) Chem Phys 188:171–181CrossRefGoogle Scholar
  45. 45.
    Stanton JF, Gauss J, Perera SA, Watts JD, Yau AD, Nooijen M, Oliphant N, Szalay PG, Lauderdale WJ, Gwaltney SR, Beck S, Balková A, Bernholdt DE, Baeck KK, Rozyczko P, Sekino H, Huber C, Pittner J, Cencek W, Taylor D, Bartlett RJ, ACES II is a program product of the Quantum Theory Project, University of Florida. Integral packages included are VMOL (Almlöf J, Taylor PR); VPROPS (Taylor P); ABACUS (Helgaker H, Jensen HJA, Jørgensen P, Olsen J, Taylor PR); HONDO/GAMESS (Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA)Google Scholar
  46. 46.
    Dill JD, Schleyer PVR, Pople JA (1975) J Am Chem Soc 97:3402–3409CrossRefGoogle Scholar
  47. 47.
    Treboux G, Barthelat JC (1993) J Am Chem Soc 115:4870–4878CrossRefGoogle Scholar
  48. 48.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122:11154–11161CrossRefGoogle Scholar
  49. 49.
    Knop O, Boyd RJ, Choi SC (1988) J Am Chem Soc 110:7299–7301CrossRefGoogle Scholar
  50. 50.
    Alkorta I, Barrios L, Rozas I, Elguero J (2000) Theochem 496:131–137CrossRefGoogle Scholar
  51. 51.
    Mata I, Alkorta I, Espinosa E, Molins E, Elguero J (2007) In: Matta CF, Russell RJ (eds) The quantum theory of atoms in molecules: from solid state to DNA and drug design” pp 425–452, WileyGoogle Scholar
  52. 52.
    Lynden-Bell RM, Harris RK (1969) Nuclear magnetic resonance spectroscopy. Appleton Century Crofts, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Ibon Alkorta
    • 1
  • Janet E. Del Bene
    • 2
  • José Elguero
    • 1
  • Otilia Mó
    • 3
  • Manuel Yáñez
    • 3
  1. 1.Instituto de Química Médica (CSIC)MadridSpain
  2. 2.Department of ChemistryYoungstown State UniversityYoungstownUSA
  3. 3.Departamento de Química, C-9Universidad Autónoma de MadridMadridSpain

Personalised recommendations