Theoretical Chemistry Accounts

, Volume 125, Issue 3–6, pp 193–201 | Cite as

The application of quantum chemistry and condensed matter theory in studying amino-acids, protein folding and anticancer drug technology

  • N. H. March
  • Clarence C. Matthai
Regular Article


The adaptation of methods from quantum chemistry and condensed matter theory for studying biological molecules has proved fruitful in developing our understanding of the electronic and conformational structure and thereby the functionality of amino-acids and proteins. Professor Suhai has been at the forefront of these developments and has made contributions in many areas of this vast field of research. In this article, we focus on three such areas, namely, (1) amino acids, (2) bacteriorhodopsin and (3) anti-cancer drugs involving especially Ru and Rh. We show how advances in density functional theory (DFT) have been used to calculate the electronic structure and density in amino-acids so that they can be compared with X-ray diffraction studies. We also demonstrate how ideas from the theory of phase transitions in condensed matter may be applied for studying phase transitions in bacteriorhodopsin, DNA and proteins. Finally, we highlight some of the recent work done in bringing DFT together with quantum chemistry modelling in studying metallopharmaceutical complexes and conformations of peptides.


Quantum chemistry Amino acids Bacteriorhodopsin Protein folding 



One of us (NHM) acknowledges partial financial support from the University of Antwerp through BOF-NOI.


  1. 1.
    Serdyuk IN, Zaccai NR, Zaccai J (2007) Methods in molecular biophysics, CambridgeGoogle Scholar
  2. 2.
    March NH, Knapp-Mohammady M, Van Alsenoy C, Suhai S (2008) Phys Chem Liquids 46:242–254CrossRefGoogle Scholar
  3. 3.
    Löwdiin PO (1955) Phys Rev 97:1490–1508CrossRefGoogle Scholar
  4. 4.
    Möller C, Plesset MS (1934) Phys Rev 46:618–622CrossRefGoogle Scholar
  5. 5.
    Dirac PAM (1930) Proc Camb Phil Soc 26:376–386CrossRefGoogle Scholar
  6. 6.
    Slater JC (1951) Phys Rev 81:385–390CrossRefGoogle Scholar
  7. 7.
    Kleinman L (1994) Phys Rev B49:14197–14201Google Scholar
  8. 8.
    Holas A, March NH (1997) Phys Rev B55:1295–1298Google Scholar
  9. 9.
    March NH (1987) Phys Rev A36:5077–5078Google Scholar
  10. 10.
    Della Sala, Görling A (2001) J Chem Phys 115:5718–5732Google Scholar
  11. 11.
    Howard IA, March NH (2003) J Chem Phys 119:5789–5794CrossRefGoogle Scholar
  12. 12.
    Howard IA, March NH (2005) Mol Phys 103:1261–1270CrossRefGoogle Scholar
  13. 13.
    March NH, Nagy Á (2006) Phys Lett A348:374–378Google Scholar
  14. 14.
    March NH, Suhai S (2007) Phys Lett A360:665–668Google Scholar
  15. 15.
    Howard ST, Huke JP, Mallinson PR, Frampton CS (1994) Phys Rev B49:7124–7136Google Scholar
  16. 16.
    Holas A, March NH (1997) Phys Rev B55:9422–9431Google Scholar
  17. 17.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. OUP, New YorkGoogle Scholar
  18. 18.
    Howard IA, Klein DJ, March NH, Van Alsenoy C, Suhai S, Janosvalfi Z, Nagy A (2003) J Phys Chem B108:14870–14875Google Scholar
  19. 19.
    Sakurai M, Sakata K, Saito S, Nakajima S, Inoue Y (2003) J Am Chem Soc 125:3108–3112CrossRefGoogle Scholar
  20. 20.
    March NH, Suhai S, Matthai CC (2007) Phys Chem Liq 45:695–699Google Scholar
  21. 21.
    March NH (2006) Phys Chem Liq 44:477–497CrossRefGoogle Scholar
  22. 22.
    Heyes CD, El-Sayed MA (2001) Biochemistry 40:11819–11827CrossRefGoogle Scholar
  23. 23.
    Broulette CG, Muccio DD, Finney TK (1987) Biochemistry 26:7431–7438CrossRefGoogle Scholar
  24. 24.
    Cladera J, Galisteo ML, Dunach M, Mateo PL, Padros E (1988) Biochim Biophys Acta 943:148–156CrossRefGoogle Scholar
  25. 25.
    Taneva SG, Caaviero JMM, Muga A, Goni FM (1995) FEBS Lett 367:297–300CrossRefGoogle Scholar
  26. 26.
    Jackson MB, Sturtevant JM (1978) Biochemistry 17:911–915CrossRefGoogle Scholar
  27. 27.
    Lennard-Jones JE, Devonshire AF (1939) Proc Roy Soc London A169:317–338Google Scholar
  28. 28.
    Pople JA, Karasz FE (1961) Phys Chem Solids 18:28–39CrossRefGoogle Scholar
  29. 29.
    Tozzini V, March NH, Tosi MP (1999) Phys Chem Liq 37:185–191CrossRefGoogle Scholar
  30. 30.
    Ubbelohde AR (1965) Melting and crystal structure. OUP, New YorkGoogle Scholar
  31. 31.
    Hillen W, Goodman TC, Wells RD (1981) Nucl Acids Res 9:415–436CrossRefGoogle Scholar
  32. 32.
    Fersht A (1999) Structure and mechanism in protein science. W.H. Freeman, San FranciscoGoogle Scholar
  33. 33.
    Ramanathan S, Shakhnovich E (1994) Phys Rev E 50:1303–1316CrossRefGoogle Scholar
  34. 34.
    Sfatos CD, Gutin AM, Shakhnovich EI (1994) Phys Rev E 50:2898–2905CrossRefGoogle Scholar
  35. 35.
    Stillinger FH, Head-Gordon T (1995) Phys Rev E 52:2872–2877CrossRefGoogle Scholar
  36. 36.
    Yue K, Dill KA (1993) Phys Rev E 48:2267–2278CrossRefGoogle Scholar
  37. 37.
    Doniach S, Garel T, Orland H (1996) J Chem Phys 105:1601–1608CrossRefGoogle Scholar
  38. 38.
    Doye JPK, Sear RP, Frenkel D (1998) J Chem Phys 108:2134–2142CrossRefGoogle Scholar
  39. 39.
    Bastolla U, Grassberger P (1997) J Stat Phys 89:1061–1078CrossRefGoogle Scholar
  40. 40.
    Noguchi H, Yoshikawa K (1998) J Chem Phys 109:5070–5077CrossRefGoogle Scholar
  41. 41.
    Noguchi H, Yoshikawa K (1997) Chem Phys Lett 278:184–188CrossRefGoogle Scholar
  42. 42.
    Ivanov VA, Paul W, Binder K (1998) J Chem Phys 109:5659–5669CrossRefGoogle Scholar
  43. 43.
    Lai PY (1998) Phys Rev E 58:6222–6228CrossRefGoogle Scholar
  44. 44.
    Bustamante C, Marko JF, Siggia ED, Smith S (1994) Science 265:1599–1600CrossRefGoogle Scholar
  45. 45.
    Maurice RG, Matthai CC (1999) Phys Rev E 60:3165–3169CrossRefGoogle Scholar
  46. 46.
    Jalkanen KJ, Suhai S (1996) Chem Phys 208:81–116CrossRefGoogle Scholar
  47. 47.
    Han WG, Jalkanen KJ, Elstner M, Suhai S (1998) J Phys Chem B 102:2587–2602CrossRefGoogle Scholar
  48. 48.
    Jalkanen KJ, Degtyarenko IM, Nieminen RN, Cao X, Nafie LA, Zhu F, Barro LD (2008) Theor Chem Acc 119:191–210CrossRefGoogle Scholar
  49. 49.
    Mukhopadhyay P, Zuber G, Beratan DN (2008) Biophys J 95:5574–5586CrossRefGoogle Scholar
  50. 50.
    Peyrard M, Bishop AR (1989) Phys Rev Lett 62:2755–2758CrossRefGoogle Scholar
  51. 51.
    Freifelder D (1987) Molecular biology, Jones and Bartlett, BostonGoogle Scholar
  52. 52.
    Englander SW, Mayne L, Krishna MMG (2008) Q Rev Biophys 40:287–326Google Scholar
  53. 53.
    Englander SW, Kallenbach NR (1963) Q Rev Biophys 16:521–655CrossRefGoogle Scholar
  54. 54.
    Yomosa A (1983) Phys Rev A 27:2120–2125CrossRefGoogle Scholar
  55. 55.
    Yomosa A (1984) Phys Rev A 30:474–480CrossRefGoogle Scholar
  56. 56.
    Shklovskii BI (1999) Phys Rev Lett 82:3268–3271CrossRefGoogle Scholar
  57. 57.
    Jalkanen KJ, Jürgensen VW, Claussen A, Rahim A, Jensen GM, Wade RC, Nardi F, Jung C, Degtyarenko IM, Nieminen RM, Herrmann F, Knapp-Mohammady M, Niehaus TA, Frimand K, Suhai S (2006) Int J Quantum Chem 106:1160–1198CrossRefGoogle Scholar
  58. 58.
    March NH, Knapp-Mohammady M, Suhai S (2008) Phys Lett A 372:1881–1884CrossRefGoogle Scholar
  59. 59.
    Sigel A, Sigel H (eds) (2004) Metal ions in biological systems, vol 42. Dekker, New York Google Scholar
  60. 60.
    Sigel RK (2007) Angew Chem Int Ed 46:654–656CrossRefGoogle Scholar
  61. 61.
    Deubel DV, Chifotides HT (2007) Chem Comm 33:3438–3440CrossRefGoogle Scholar
  62. 62.
    Xia Y (2008) Rev Nat Mater 7:758–760CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of AntwerpAntwerpenBelgium
  2. 2.University of OxfordOxfordUK
  3. 3.Department of Physics and AstronomyCardiff UniversityCardiffUK

Personalised recommendations