Theoretical Chemistry Accounts

, Volume 123, Issue 1–2, pp 51–58 | Cite as

A Bohmian total potential view to quantum effects. II: decay of temporarily trapped states

  • María F. González
  • Antoni Aguilar-Mogas
  • Javier González
  • Ramon Crehuet
  • Josep M. Anglada
  • Josep Maria Bofill
  • Xavier Giménez
Regular Article


Formation, persistence and decay of temporarily trapped states, the time-dependent generalization of resonances, are analysed within the framework of Bohmian Mechanics. More specifically, the so-called Bohm’s total potential, the sum of classical plus Bohm’s quantum potential, is used. It is found that both formation and decay are triggered by the frequency in the oscillations of the total potential. These oscillations have been studied at the specific locations where the classical potential displays maxima, i.e. the ‘walls’ temporarily capturing the system’s density. Our main result is that the total potential oscillation frequency is solely dependent on the steepness of the classical potential ramp and, surprisingly, independent of the classical barrier height and width, well depth and width, collision energy or wavepacket width.


Bohmian mechanics Resonances Quantum dynamics 



The authors are among several generations of former students of Professor Santiago Olivella. It has been a true honor to have learned from the inspiring environment and mastership provided by him, along nearly four decades, so that dedicating the present work to him is just the minimum we could do as acknowledgement. Thanks a lot, Santiago!. The authors are grateful for the financial support provided by the Spanish Ministerio de Ciencia y Tecnología, DGI project CTQ2005-01117/BQU, and in part by the Generalitat de Catalunya projects 2005SGR-00111 and 2005SGR-00175, which is fully acknowledged.


  1. 1.
    Feynman RP, Leighton RB, Sands M (1963) The Feynman Lecture on Physics. Addison, ReadingGoogle Scholar
  2. 2.
    Nicolis G (1989) Prigogine I exploring complexity: an introduction. Freeman, New YorkGoogle Scholar
  3. 3.
    Zhang JZH (1999) Theory and applications of quantum molecular dynamics. World Scientific, SingaporeGoogle Scholar
  4. 4.
    Truhlar DG (ed) (1984) Resonances in electron-molecule scattering, van der Waals complexes and reactive chemical dynamics. ACS symposium series vol C 263, American Chemical Society, WashingtonGoogle Scholar
  5. 5.
    Miller WH, Zhang JZH (1991) J Phys Chem 95:12. doi: 10.1021/j100154a007 CrossRefGoogle Scholar
  6. 6.
    Truhlar DG, Kuppermann A (1970) J Chem Phys 52:3841. doi: 10.1063/1.1673570 CrossRefGoogle Scholar
  7. 7.
    Wu SF, Levine RD (1971) Mol Phys 22:881. doi: 10.1080/00268977100103201 CrossRefGoogle Scholar
  8. 8.
    Skodje RT, Skouteris D, Manolopoulos DE, Lee S-H, Dong F, Liu K (2000) Phys Rev Lett 85:1206. doi: 10.1103/PhysRevLett.85.1206 CrossRefGoogle Scholar
  9. 9.
    Miller WH (1995) Faraday Discuss Chem Soc 102:53. doi: 10.1039/fd9950200053 CrossRefGoogle Scholar
  10. 10.
    Kendrick B, Pack RT (1995) Chem Phys Lett 235:291. doi: 10.1016/0009-2614(95)00116-L CrossRefGoogle Scholar
  11. 11.
    Chao SD, Skodje RT (2002) Theor Chem Acc 108:273. doi: 10.1007/s00214-002-0366-6 Google Scholar
  12. 12.
    Miller WH (1974) Adv Chem Phys 25:69. doi: 10.1002/9780470143773.ch2 CrossRefGoogle Scholar
  13. 13.
    Child MS (1996) Molecular collision theory. Dover, New YorkGoogle Scholar
  14. 14.
    Sanz AS, Miret-Artés S (2007) Phys Rep 451:37. doi: 10.1016/j.physrep.2007.08.001 CrossRefGoogle Scholar
  15. 15.
    Sanz AS, Miret-Artés S (2005) J Chem Phys 122:014702. doi: 10.1063/1.1828032 CrossRefGoogle Scholar
  16. 16.
    Bohm D, Hiley B (1993) The undivided universe. Routledge and Kegan Paul, LondonGoogle Scholar
  17. 17.
    Holland PR (1993) The quantum theory of motion. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Ali MM, Majumdar AS, Home D (2002) Phys Lett A 304:61. doi: 10.1016/S0375-9601(02)01353-1 CrossRefGoogle Scholar
  19. 19.
    Oriols X, Martín F, Suñé J (1996) Phys Rev A 54:2594. doi: 10.1103/PhysRevA.54.2594 CrossRefGoogle Scholar
  20. 20.
    Bittner ER (2000) J Chem Phys 112:9703. doi: 10.1063/1.481607 CrossRefGoogle Scholar
  21. 21.
    González J, Bofill JM, Giménez X (2004) J Chem Phys 120:10961. doi: 10.1063/1.1747869 CrossRefGoogle Scholar
  22. 22.
    Colbert DT, Miller WH (1992) J Chem Phys 96:1982. doi: 10.1063/1.462100 CrossRefGoogle Scholar
  23. 23.
    Neuhauser D, Baer M (1989) J Chem Phys 90:4351. doi: 10.1063/1.456646 CrossRefGoogle Scholar
  24. 24.
    González J, González MF, Bofill JM, Giménez X (2005) J Mol Struct Theochem 727:205. doi: 10.1016/j.theochem.2005.02.052 CrossRefGoogle Scholar
  25. 25.
    González MF, Bofill JM, Giménez X, Borondo F (2008) Phys Rev A 78:032102. doi: 10.1103/PhysRevA.78.032102 CrossRefGoogle Scholar
  26. 26.
    Landauer R, Martin T (1994) Rev Mod Phys 66:217. doi: 10.1103/RevModPhys.66.217 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • María F. González
    • 3
    • 4
  • Antoni Aguilar-Mogas
    • 3
    • 4
  • Javier González
    • 1
  • Ramon Crehuet
    • 1
  • Josep M. Anglada
    • 1
  • Josep Maria Bofill
    • 2
    • 4
  • Xavier Giménez
    • 3
    • 4
  1. 1.Institut de Química Avançada de CatalunyaConsejo Superior de Investigaciones CientíficasBarcelonaSpain
  2. 2.Departament de Química OrgànicaUniversitat de BarcelonaBarcelonaSpain
  3. 3.Departament de Química FísicaUniversitat de BarcelonaBarcelonaSpain
  4. 4.Institut de Química Teòrica i Computacional (IQTCUB)Universitat de BarcelonaBarcelonaSpain

Personalised recommendations