Theoretical Chemistry Accounts

, Volume 122, Issue 3–4, pp 127–136 | Cite as

On the basis set superposition error in supermolecular calculations of interaction-induced electric properties: many-body components

  • Bartłomiej Skwara
  • Wojciech Bartkowiak
  • Daniel Luiz Da Silva
Regular Article


In the present paper we analyze basis set superposition error (BSSE) removal methods from many-body components of interaction-induced electric properties. The Valiron–Mayer function counterpoise (VMFC), site–site function counterpoise (SSFC) and TB methods have been employed in order to obtain the incremental optical components of linear hydrogen fluoride clusters (HF)n, where n = {3,4}. Following Mierzwicki and Latajka, who have performed similar calculations for the interaction energy, we compare those three methods of eliminating BSSE using several Dunning’s correlation consistent basis sets.


Basis set superposition error Interaction-induced properties Many-body components NLO properties (Hyper)polarizabilities 



The authors acknowledge the financial support obtained via the Ministry of Science and Higher Education Grant No. N N 204 2206 33. The work was partly supported by the European Commission through the Human Potential Programme (Marie-Curie RTN BIMORE GRANT No. MRTN-CT-2006-035859). The authors are grateful to Karol M. Langner for editorial assistance and Anna Kaczmarek for reading the manuscript.


  1. 1.
    van Duijneveldt FB (1995) Basis set superposition error. In: Sheiner S (ed) Molecular interactions. From van der Waals to Strongly Bonded Complex John Wiley & Son, ChichesterGoogle Scholar
  2. 2.
    Chałasiński G, Szczęśniak MM (2000) Chem Rev 100:4227. doi: 10.1021/cr990048z CrossRefGoogle Scholar
  3. 3.
    Karlström G, Sadlej AJ (1982) Theor Chim Acta 61:1. doi: 10.1007/BF00573859 CrossRefGoogle Scholar
  4. 4.
    Boys SF, Bernardi F (1970) Mol Phys 19:553. doi: 10.1080/00268977000101561 CrossRefGoogle Scholar
  5. 5.
    Chałasiński G, Gutowski M (1985) Mol Phys 54:1173. doi: 10.1080/00268978500100931 CrossRefGoogle Scholar
  6. 6.
    van Duijneveldt FB, van Duijneveldt JGCM, van de Rijdt, van Lenthe JH (1994) Chem Rev 94:1873Google Scholar
  7. 7.
    Wells BH, Wilson S (1983) Chem Phys Lett 101:429. doi: 10.1016/0009-2614(83)87508-3 CrossRefGoogle Scholar
  8. 8.
    Valiron P, Mayer I (1997) Chem Phys Lett 275:46. doi: 10.1016/S0009-2614(97)00689-1 CrossRefGoogle Scholar
  9. 9.
    Mierzwicki K, Latajka Z (2003) Chem Phys Lett 380:654. doi: 10.1016/j.cplett.2003.09.038 CrossRefGoogle Scholar
  10. 10.
    Martin JML, Francois JP, Gijbels R (1989) Theor Chim Acta 76:195. doi: 10.1007/BF00527473 CrossRefGoogle Scholar
  11. 11.
    Salvador P, Szczesniak MM (2003) J Chem Phys 118:538Google Scholar
  12. 12.
    Hunt KLC (1980) Chem Phys Lett 70:336CrossRefGoogle Scholar
  13. 13.
    Buckingham AD, Concannon EP, Hands JD (1994) J Phys Chem 98:10455CrossRefGoogle Scholar
  14. 14.
    Fowler PW, Sadlej AJ (1992) Mol Phys 77:709CrossRefGoogle Scholar
  15. 15.
    Moszyński R, Heijmen TGA, Wormer PES, van der Avoird A (1996) J Chem Phys 104:6997CrossRefGoogle Scholar
  16. 16.
    Bancewicz T (1999) J Chem Phys 111:7440CrossRefGoogle Scholar
  17. 17.
    Maroulis G (2000) J Phys Chem A 104:4772CrossRefGoogle Scholar
  18. 18.
    Papadopoulos MG, Waite J (1987) Chem Phys Lett 135:361CrossRefGoogle Scholar
  19. 19.
    Wang BQ, Li ZR, Wu D, Sun CC (2003) J Mol Struct (THEOCHEM) 620:77CrossRefGoogle Scholar
  20. 20.
    Wang BQ, Li ZR, Wu D, Hao XY, Li RJ, Sun CC (2004) J Phys Chem A 108:2464CrossRefGoogle Scholar
  21. 21.
    Hättig C, Larsen H, Olsen J, Jørgensen P, Koch H, Fernández B, Rizzo A (1999) J Chem Phys 111:10099CrossRefGoogle Scholar
  22. 22.
    Skwara B, Bartkowiak W, Gora RW, Niewodniczański W, Roszak S (2006) Mol Phys 104:2263CrossRefGoogle Scholar
  23. 23.
    Maroulis G (2000) J Chem Phys 113:1813CrossRefGoogle Scholar
  24. 24.
    Bishop DM, Dupuis M (1996) Mol Phys 88:887CrossRefGoogle Scholar
  25. 25.
    Cundari TR, Kurtz HA, Zhou T (2001) J Chem Inf Comp Sci 41:38Google Scholar
  26. 26.
    Avramopoulos A, Papadopoulos MG, Sadlej AJ (2002) J Chem Phys 117:10026CrossRefGoogle Scholar
  27. 27.
    Głaz W, Bancewicz T, Godet JL, Maroulis G, Haskopoulos A (2006) Phys Rev A 63:042708CrossRefGoogle Scholar
  28. 28.
    Maroulis G, Haskopoulos A (2001) Chem Phys Lett 349:335CrossRefGoogle Scholar
  29. 29.
    Heijmen TGA, Moszynski R, Wormer PES, van der Avoird A (1996) Mol Phys 89:81CrossRefGoogle Scholar
  30. 30.
    Li RJ, Li ZR, Wu D, Hao XY, Wang BQ, Sun CC (2003) J Phys Chem A 107:6306CrossRefGoogle Scholar
  31. 31.
    Perez JJ, Clarke JHR, Hincliffe A (1984) Chem Phys Lett 104:583CrossRefGoogle Scholar
  32. 32.
    Teboul V (1999) Mol Phys 96:1637CrossRefGoogle Scholar
  33. 33.
    Skwara B, Bartkowiak W, Zawada A, Góra RW, Leszczynski J (2007) Chem Phys Lett 436:116CrossRefGoogle Scholar
  34. 34.
    Skwara B, Zawada A, Bartkowiak W (2007) Computing Letters 3:155CrossRefGoogle Scholar
  35. 35.
    Kishi R, Umezaki S, Fukui H, Minami T, Kubota K, Takahashi H, Nakano M (2008) Chem Phys Lett 454:91CrossRefGoogle Scholar
  36. 36.
    Ostlund NS, Marrifield DL (1976) Chem Phys Lett 39:612CrossRefGoogle Scholar
  37. 37.
    Turi L, Dannenberg JJ (1993) J Phys Chem 97:2488CrossRefGoogle Scholar
  38. 38.
    Cohen HD, Roothaan CCJ (1967) J Chem Phys S43:34Google Scholar
  39. 39.
    Kurtz HA, Dudis DS (1998) Quantum mechanical methods for predicting nonlinear optical properties. In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 12. New York, p 241Google Scholar
  40. 40.
    Schmidt MW et al (1993) J Comp Chem 14:1347CrossRefGoogle Scholar
  41. 41.
    Woon DE, Dunning TH Jr (1993) J Chem Phys 98:1358CrossRefGoogle Scholar
  42. 42.
    Kendall RE, Dunning TH Jr, Harrison RJ (1992) J Chem Phys 96:6796CrossRefGoogle Scholar
  43. 43.
    Woon DE, Dunning TH Jr (1994) J Chem Phys 100:2975CrossRefGoogle Scholar
  44. 44.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Bartłomiej Skwara
    • 1
  • Wojciech Bartkowiak
    • 1
  • Daniel Luiz Da Silva
    • 1
    • 2
  1. 1.Institute of Physical and Theoretical ChemistryWroclaw University of TechnologyWrocławPoland
  2. 2.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations