Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 307–312 | Cite as

Assessment of time-dependent density functional theory for predicting excitation energies of bichromophoric peptides: case of tryptophan-phenylalanine

  • Rodolphe Pollet
  • Valérie Brenner
Regular Paper

Abstract

The ability of applied time-dependent density functional theory to predict the near-ultraviolet absorption spectrum of bichomophoric peptides in the gas phase has been tested by calculating the vertical excitation energies of the Tryptophan-Phenylalanine (Trp-Phe) dipeptide. We show that the contamination of the low-frequency part of the spectrum by spurious charge-transfer excitations depends both on the conformation of the peptide chain and the exchange-correlation approximation. For the most stable structure investigated, a hybrid density functional appears to eliminate a large proportion of the spurious states.

Keywords

TDDFT calculations Tryptophan-phenylalanine Peptides Bichromophores Charge transfer excitations 

References

  1. 1.
    Andersson K, Malmqvist PA, Roos BO (1992) J Chem Phys 96:1218CrossRefGoogle Scholar
  2. 2.
    Serrano-Andrès L, Roos BO (1996) J Am Chem Soc 118:185CrossRefGoogle Scholar
  3. 3.
    Sobolewski AL, Domcke W (1999) Chem Phys Lett 315:293CrossRefGoogle Scholar
  4. 4.
    Marques MAL, Ullrich CA, Nogueira F, Rubio A, Burke K, Gross EKU (2006) Time-dependent density functional theory. Springer, BerlinGoogle Scholar
  5. 5.
    Bernasconi L, Sprik M, Hutter J (2003) J Chem Phys 119:12417CrossRefGoogle Scholar
  6. 6.
    Tavernelli I, Röhrig UF, Rothlisberger U (2005) Mol Phys 103:963CrossRefGoogle Scholar
  7. 7.
    Neugebauer J, Louwerse MJ, Baerends EJ, Wesolowski TA (2005) J Chem Phys 122:094115CrossRefGoogle Scholar
  8. 8.
    Lange A, Herbert JM (2007) J Chem Theory Comput 3:1680CrossRefGoogle Scholar
  9. 9.
    Petersilka M, Gossmann UJ, Gross EKU (1996) Phys Rev Lett 76:1212CrossRefGoogle Scholar
  10. 10.
    Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999) Mol Phys 97:859CrossRefGoogle Scholar
  11. 11.
    Adamo C, Scuseria GE, Barone V (1999) J Chem Phys 111:2889CrossRefGoogle Scholar
  12. 12.
    Parac M, Grimme S (2002) J Phys Chem A 106:6844CrossRefGoogle Scholar
  13. 13.
    Fabian J, Diaz LA, Seifert G, Niehaus T (2002) J Mol Struct (Theochem) 594:41CrossRefGoogle Scholar
  14. 14.
    Burke K, Werschnik J, Gross EKU (2005) J Mol Struct (Theochem) 623:062206Google Scholar
  15. 15.
    Tozer DJ (2003) J Chem Phys 119:12697CrossRefGoogle Scholar
  16. 16.
    Dreuw A, Head-Gordon M (2005) Chem Rev 105:4009CrossRefGoogle Scholar
  17. 17.
    Chen Y, Barkley MD (1998) Biochemistry 37:9976CrossRefGoogle Scholar
  18. 18.
    Borsarelli CD, Bertolotti SG, Previtalt CM (2001) Photochem Photobiol 73:97CrossRefGoogle Scholar
  19. 19.
    Callis PR, Petrenko AP, Muino PL, Tusell JR (2007) J Phys Chem B 111:10335CrossRefGoogle Scholar
  20. 20.
    Platt JR (1949) J Chem Phys 17:484CrossRefGoogle Scholar
  21. 21.
    Catalán J, Díaz C (2003) Chem Phys Lett 368:717CrossRefGoogle Scholar
  22. 22.
    Crespo A, Turjanski AG, Estrin DA (2002) Chem Phys Lett 365:15CrossRefGoogle Scholar
  23. 23.
    Dedonder-Lardeux C, Jouvet C, Perun S, Sobolewski AL (2003) Phys Chem Chem Phys 5:5118CrossRefGoogle Scholar
  24. 24.
    Rogers DM, Besley NA, O’Shea P, Hirst JD (2005) J Phys Chem B 109:23061CrossRefGoogle Scholar
  25. 25.
    Callis PR, Liu T (2004) J Phys Chem B 108:4248CrossRefGoogle Scholar
  26. 26.
    Parac M, Grimme S (2003) Chem Phys 292:11CrossRefGoogle Scholar
  27. 27.
    CPMD, Copyright IBM Corp 1990–2006, Copyright MPI für Festkörperforschung Stuttgart 1997–2001Google Scholar
  28. 28.
    Marx D, Hutter J (2000) In: Modern methods and algorithms of quantum chemistry (ed) Grotendorst J 301–449 NIC, Jülich for downloads see http://www.theochem.rub.de/go/cprev.html
  29. 29.
    Hirata S, Head-Gordon M (1999) Chem Phys Lett 314:291CrossRefGoogle Scholar
  30. 30.
    Hutter J (2003) J Chem Phys 118:3928CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, JAMontgomery J, Vreven T, Kudin KN, Burant JC, Cossi JM, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision a.1. Gaussian Inc., PittsburghGoogle Scholar
  32. 32.
    Troullier N, Martins JM (1991) Phys Rev B 43:1993CrossRefGoogle Scholar
  33. 33.
    Martyna GJ, Tuckerman ME (1999) J Chem Phys 110:2810CrossRefGoogle Scholar
  34. 34.
    Schäfer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  35. 35.
    Jorgensen WL, Tirado-Rives J (2005) Proc Natl Acad Sci USA 102:6665CrossRefGoogle Scholar
  36. 36.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865. Erratum: (1997) Phys Rev Lett 78:1396Google Scholar
  37. 37.
    Lange AW, Rohrdanz MA, Herbert JM (2008) J Phys Chem B 12:6304CrossRefGoogle Scholar
  38. 38.
    Christiansen O, Koch H, Jorgensen P (1995) Chem Phys Lett 243:409CrossRefGoogle Scholar
  39. 39.
    Hättig C, Weigend F (2000) J Chem Phys 113:5154CrossRefGoogle Scholar
  40. 40.
    Perdew JP, Schmidt K (2001) Density functional theory and its application to materials V. Van Doren et al. AIP Press, New YorkGoogle Scholar
  41. 41.
    Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Phys Rev Lett 91:146401CrossRefGoogle Scholar
  42. 42.
    Magyar RJ, Tretiak S (2007) J Chem Theory Comput 3:976CrossRefGoogle Scholar
  43. 43.
    Schipper PRT, Gritsenko OV, Grisbergen SJA, Baerends EJ (2000) J Chem Phys 112:1344CrossRefGoogle Scholar
  44. 44.
    Luca GD, Romeo A, Scolaro LM, Ricciardi G, Rosa A (2007) Inorg Chem 46:5979CrossRefGoogle Scholar
  45. 45.
    Yang G, Guan W, Yan L, Su Z, Xu L, Wang EB (2006) J Phys Chem B 110:23092CrossRefGoogle Scholar
  46. 46.
    Dreuw A, Weisman JL, Head-Gordon M (2003) J Chem Phys 119:2943CrossRefGoogle Scholar
  47. 47.
    Bernasconi L, Sprik M, Hutter J (2004) Chem Phys Lett 394:141CrossRefGoogle Scholar
  48. 48.
    Britten A, Lockwood G (1976) Spectrochim Acta 32A:1335Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Laboratoire Francis Perrin, DSM/IRAMIS/SPAM-LFP (CEA-CNRS URA2453)Gif-sur-YvetteFrance

Personalised recommendations