Theoretical Chemistry Accounts

, Volume 121, Issue 5–6, pp 289–295 | Cite as

Core-valence correlating basis sets for alkali and alkaline earth metal atoms

  • Takeshi NoroEmail author
  • Masahiro Sekiya
  • Toshikatsu Koga
Regular Article


For 12 alkali and alkaline earth metal atoms from Li to Ra, contracted Gaussian-type function sets are developed for the description of correlations among the (n−1)s, (n−1)p, and ns electrons, where n is the principal quantum number of the outermost shell. A segmented contraction scheme is employed for the compactness and efficiency. Contraction coefficients and exponents are determined so that the deviation from accurate natural orbitals of the ground states is minimized. For heavy atoms from Cs to Ra, the spin-free relativistic effects are considered through the third-order Douglas–Kroll approximation. To test the present correlating sets, all-electron calculations are performed for the ground state of 12 diatomic hydrides, 6 alkali metal dimers, 4 alkaline earth metal oxides, and 12 diatomic fluorides. The calculated spectroscopic constants are in excellent agreement with the experimental values.


Correlating basis set Core-valence correlation Segmented contraction 



The authors would like to acknowledge Prof. Miyoshi and Dr. Nakayama for helpful discussion. This work was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.


  1. 1.
    Woon DE, Dunning TH Jr (1995) J Chem Phys 103:4572CrossRefGoogle Scholar
  2. 2.
    Martin JML, Taylor PR (1994) Chem Phys Lett 225:473CrossRefGoogle Scholar
  3. 3.
    Peterson KA, Dunning TH Jr (2002) J Chem Phys 117:10548CrossRefGoogle Scholar
  4. 4.
    Blaudeau J-P, McGrath MP, Curtiss A, Radom L (1997) J Chem Phys 107:5016CrossRefGoogle Scholar
  5. 5.
    Curtiss LA, Raghavachari K, Redfern PC, Rassolov V, Pople JA (1998) J Chem Phys 109:7764CrossRefGoogle Scholar
  6. 6.
    Partridge H, Bauschlicher CW Jr, Walch SP, Liu B (1983) J Chem Phys 79:1866CrossRefGoogle Scholar
  7. 7.
    Iron MA, Oren M, Martin JML (2003) Mol Phys 101:1345CrossRefGoogle Scholar
  8. 8.
    Noro T, Sekiya M, Koga T (1997) Theor Chem Acc 98:25Google Scholar
  9. 9.
    Sekiya M, Noro T, Koga T, Matsuyama H (1998) J Mol Struct (Teochem) 451:51CrossRefGoogle Scholar
  10. 10.
    Sekiya M, Noro T, Osanai Y, Koga T (2001) Theor Chem Acc 106:297Google Scholar
  11. 11.
    Noro T, Sekiya M, Koga T (2003) Theor Chem Acc 109:85Google Scholar
  12. 12.
    Noro T, Sekiya M, Osanai Y, Miyoshi E, Koga T (2003) J Chem Phys 119:5142CrossRefGoogle Scholar
  13. 13.
    Sekiya M, Noro T, Miyoshi E, Osanai Y, Koga T (2006) J Comp Chem 27:463CrossRefGoogle Scholar
  14. 14.
    Nakajima T, Hirao K (2000) J Chem Phys 113:7786CrossRefGoogle Scholar
  15. 15.
    Powell MJD (1964) Comput J 7:155CrossRefGoogle Scholar
  16. 16.
    Sasaki F, Sekiya M, Noro T, Ohtsuki K, Osanai Y (1993) Non-relativistic configuration interaction calculations for many-electron atoms: ATOMCI. In: Clementi E (ed) METECC-94, STEF, CagliariGoogle Scholar
  17. 17.
    Visscher L, Dyall KG (1997) At Data Nucl Data Tables 67:207CrossRefGoogle Scholar
  18. 18.
    Huzinaga S, Miguel B (1990) Chem Phys Lett 175:289CrossRefGoogle Scholar
  19. 19.
    Huzinaga S, Klobukowski M (1993) Chem Phys Lett 212:260CrossRefGoogle Scholar
  20. 20.
    Koga T, Tatewaki H, Shimazaki T (2000) Chem Phys Lett 328:473CrossRefGoogle Scholar
  21. 21.
    Yamamoto H, Matsuoka O (1992) Bull Univ Electro Comm 5:23Google Scholar
  22. 22.
    Tatewaki H, Koga T (1996) J Chem Phys 104:8493CrossRefGoogle Scholar
  23. 23.
    Karlstrom G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003) Comp Mat Sci 28:222CrossRefGoogle Scholar
  24. 24.
    Boys SF, Bernardi F (1970) Mol Phys 19:203CrossRefGoogle Scholar
  25. 25.
    Uehara H, Horiai K, Konno T (1997) J Mol Struct 413:457CrossRefGoogle Scholar
  26. 26.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic Molecules, Van Nostrand Reinhold, New YorkGoogle Scholar
  27. 27.
    Dulick M, Zhang K-Q, Guo B, Bernath PF (1998) J Mol Spectrosc 188:14CrossRefGoogle Scholar
  28. 28.
    Colin R, De Greef D (1975) Can J Phys 53:2142CrossRefGoogle Scholar
  29. 29.
    Pesl FP, Lutz S, Bergmann K (2000) Eur Phys J D 10:247CrossRefGoogle Scholar
  30. 30.
    Lemoine B, Demuynck C, Destombes JL, Davies PB (1988) J Chem Phys 89:673CrossRefGoogle Scholar
  31. 31.
    Petitprez D, Lemoine B, Demuynck C, Destombes JL, Macke B (1989) J Chem Phys 91:4462CrossRefGoogle Scholar
  32. 32.
    Amiot C, Vergès J, and Fellows CE (1995) J Chem Phys 103:3350CrossRefGoogle Scholar
  33. 33.
    Amiot C, Crozet P, Vergès J (1985) Chem Phys Lett 121:390CrossRefGoogle Scholar
  34. 34.
    Muntianu A, Guo B, Bernath PF (1996) J Mol Spectrosc 176:274CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Takeshi Noro
    • 1
    Email author
  • Masahiro Sekiya
    • 2
  • Toshikatsu Koga
    • 3
  1. 1.Division of Chemistry, Graduate School of ScienceHokkaido UniversitySapporoJapan
  2. 2.Department of Intercultural StudiesTomakomai Komazawa UniversityTomakomaiJapan
  3. 3.Department of Applied ChemistryMuroran Institute of TechnologyMuroranJapan

Personalised recommendations