Theoretical Chemistry Accounts

, Volume 121, Issue 3–4, pp 181–186 | Cite as

Inverse hydrogen bonds between XeH2 and hydride and fluoride derivatives of Li, Be, Na and Mg

Regular Article

Abstract

A theoretical study of the inverse hydrogen bonds complexes formed by the XeH2 molecule and hydride and fluoride derivatives of Li, Be, Na and Mg has been carried out by means of DFT (B3LYP/DGDZVP) and ab initio [MP2/DGDZVP and MP2/LJ18/6-311++G(2d,2p)] calculations. The complexes obtained present interaction energies up to −81 kJ/mol. The analysis of the electron density shows electron transfer from the XeH2 to the electron acceptor molecules. The calculated absolute chemical shieldings show the high sensitivity of the xenon atom upon complexation.

Keywords

Inverse hydrogen bonds XeH2 Metal hydride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

214_2008_462_MOESM1_ESM.doc (70 kb)
ESM 1 (DOC 70 kb)

References

  1. 1.
    Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27: 163. doi:10.1039/a827163z CrossRefGoogle Scholar
  2. 2.
    Desiraju GR, Steiner T (1999) The weak hydrogen bond. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Klooster WT, Koetzle TF, Siegbahn PEM, Richardson TB, Crabtree RH (1999) J Am Chem Soc 121: 6337. doi:10.1021/ja9825332 CrossRefGoogle Scholar
  4. 4.
    Alkorta I, Elguero J, FocesFoces C (1996) Chem Commun 1633Google Scholar
  5. 5.
    Rozas I, Alkorta I, Elguero J (1997) Chem Phys Lett 275: 423. doi:10.1016/S0009-2614(97)00767-7 CrossRefGoogle Scholar
  6. 6.
    Alkorta I, Elguero J, Mo O, Yanez M, Del Bene JE (2002) J Phys Chem A 106: 9325. doi:10.1021/jp021159w CrossRefGoogle Scholar
  7. 7.
    Alkorta I, Elguero J, Grabowski SJ (2008) J Phys Chem A 112: 2721. doi:10.1021/jp711387g CrossRefGoogle Scholar
  8. 8.
    Alkorta I, Zborowski K, Elguero J, Solimannejad M (2006) J Phys Chem A 110: 10279. doi:10.1021/jp061481x CrossRefGoogle Scholar
  9. 9.
    Solimannejad M, Boutalib A (2006) Chem Phys 320: 275. doi:10.1016/j.chemphys.2005.07.028 CrossRefGoogle Scholar
  10. 10.
    Solimannejad M, Alkorta I (2006) Chem Phys 324: 459. doi:10.1016/j.chemphys.2005.11.007 CrossRefGoogle Scholar
  11. 11.
    Solimannejad M, Scheiner S (2005) J Phys Chem A 109: 11933. doi:10.1021/jp0563383 CrossRefGoogle Scholar
  12. 12.
    Solimannejad M, Scheiner S (2005) J Phys Chem A 109: 6137. doi:10.1021/jp052534y CrossRefGoogle Scholar
  13. 13.
    Custelcean R, Jackson JE (2001) Chem Rev 101: 1963. doi:10.1021/cr000021b CrossRefGoogle Scholar
  14. 14.
    Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101: 4236. doi:10.1021/jp963943k CrossRefGoogle Scholar
  15. 15.
    Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110: 10296. doi:10.1021/jp062289y CrossRefGoogle Scholar
  16. 16.
    Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422: 334. doi:10.1016/j.cplett.2006.01.120 CrossRefGoogle Scholar
  17. 17.
    Pettersson M, Lundell J, Räsänen M (1995) J Chem Phys 103: 205. doi:10.1063/1.469632 CrossRefGoogle Scholar
  18. 18.
    Feldman VI, Sukhov FF (1996) Chem Phys Lett 255: 425. doi:10.1016/0009-2614(96)00346-6 CrossRefGoogle Scholar
  19. 19.
    Feldman VI, Sukhov FF, Orlov AY (1997) Chem Phys Lett 280: 507. doi:10.1016/S0009-2614(97)01208-6 CrossRefGoogle Scholar
  20. 20.
    Berghof V, Gudipati MS, Schwentner N (2004) J Chem Phys 120: 1414. doi:10.1063/1.1631816 CrossRefGoogle Scholar
  21. 21.
    Feldman VI, Sukhov FF, Logacheva EA, Orlov AY, Tyulpina IV, Tyurin DA (2007) Chem Phys Lett 437:207. doi:10.1016/j.cplett.2007.02.039 CrossRefGoogle Scholar
  22. 22.
    Lundell J, Pettersson M (1999) PCCP 1: 1691Google Scholar
  23. 23.
    Berski S, Lundell J, Latajka Z (2000) J Mol Struct 552: 223. doi:10.1016/S0022-2860(00)00486-5 CrossRefGoogle Scholar
  24. 24.
    Lundell J, Berski S, Latajka Z (2000) PCCP 2: 5521Google Scholar
  25. 25.
    Solimannejad M, Amlashi LM, Alkorta I, Elguero J (2006) Chem Phys Lett 422: 226. doi:10.1016/j.cplett.2006.02.070 CrossRefGoogle Scholar
  26. 26.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70: 560. doi:10.1139/v92-079 CrossRefGoogle Scholar
  27. 27.
    Becke AD (1993) J Chem Phys 98: 5648. doi:10.1063/1.464913 CrossRefGoogle Scholar
  28. 28.
    Lee CT, Yang WT, Parr RG (1988) Phys Rev B 37: 785. doi:10.1103/PhysRevB.37.785 CrossRefGoogle Scholar
  29. 29.
    Møller C, Plesset MS (1934) Phys Rev 46: 618. doi:10.1103/PhysRev.46.618 CrossRefGoogle Scholar
  30. 30.
    LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87: 2812. doi:10.1063/1.453069 CrossRefGoogle Scholar
  31. 31.
    Frisch MJ, Pople JA, Binkley JS (1984) J Chem Phys 80: 3265. doi:10.1063/1.447079 CrossRefGoogle Scholar
  32. 32.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian-03. Gaussian, Inc., Wallingford, CTGoogle Scholar
  33. 33.
    Boys SF, Bernardi F (1970) Mol Phys 19: 553. doi:10.1080/00268977000101561 CrossRefGoogle Scholar
  34. 34.
    Bader RFW (1990) Atoms in molecules: a quantum theory. The international series of monographs of chemistry. Clarendon Press, OxfordGoogle Scholar
  35. 35.
    Biegler-König FW, Bader RFW, Tang TH (1982) J Comput Chem 3: 317. doi:10.1002/jcc.540030306 CrossRefGoogle Scholar
  36. 36.
    Popelier PLA (1999) With a contribution from R.G.A. Bone (UMIST,Engl,EU) MORPHY98, a topological analysis programGoogle Scholar
  37. 37.
    Alkorta I, Picazo O (2005) Arkivoc ix:305Google Scholar
  38. 38.
    Ditchfie R (1974) Mol Phys 27: 789. doi:10.1080/00268977400100711 CrossRefGoogle Scholar
  39. 39.
    London F (1937) J Phys Radium 8: 397. doi:10.1051/jphysrad:01937008010039700 CrossRefGoogle Scholar
  40. 40.
    Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101: 9457. doi:10.1021/jp971893t CrossRefGoogle Scholar
  41. 41.
    Alkorta I, Rozas I, Elguero J (1998) J Phys Chem A 102: 9278. doi:10.1021/jp982251o CrossRefGoogle Scholar
  42. 42.
    Zhao Y, Truhlar DG (2008) Acc Chem Res 41: 157. doi:10.1021/ar700111a CrossRefGoogle Scholar
  43. 43.
    Alkorta I, Rozas I, Elguero J (2001) J Phys Chem A 105: 743. doi:10.1021/jp002808b CrossRefGoogle Scholar
  44. 44.
    Cremer D (1984) Croat Chem Acta 57: 1259Google Scholar
  45. 45.
    Rozas I, Alkorta I, Elguero J (2000) J Am Chem Soc 122: 11154. doi:10.1021/ja0017864 CrossRefGoogle Scholar
  46. 46.
    Raftery D, Webb GA (2006) Annual reports on NMR spectroscopy. Academic Press, p 205Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Instituto de Química Médica (CSIC)MadridSpain
  2. 2.Quantum Chemistry Group, Department of ChemistryArak UniversityArakIran
  3. 3.Centre for Theoretical and Computational Chemistry, Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations