Advertisement

Theoretical Chemistry Accounts

, Volume 121, Issue 1–2, pp 11–19 | Cite as

Explicitly correlated second-order perturbation theory calculations on molecules containing heavy main-group elements

  • Florian A. Bischoff
  • Sebastian Höfener
  • Andreas Glöß
  • Wim KlopperEmail author
Regular Article

Abstract

Slater-type geminals (STGs) have been used as explicitly correlated two-electron basis functions for calculations on the hydrides of N–As and Sb (as well as on the hydrides of O–Se and F–Br with similar, not reported results) in various one-electron basis sets of Gaussian atomic orbitals. The performance of the explicitly correlated theory has been assessed with respect to the exponent of the STG, for example, by using different exponents for individual pair correlation functions and pair energies. It is shown that a correlation factor with an exponent of \({\gamma = 1.4 a_{0}^{-1}}\) can give reliable results within 1% from the basis-set limit for all investigated molecules in an aug-cc-pVQZ basis set for the valence shells, using fixed amplitudes for the STGs in a diagonal orbital-invariant formulation of the theory. The use of relativistic effective core potentials (RECPs) in explicitly correlated second-order perturbation theory has been investigated.

Keywords

Chem Phys Correlation Factor Valence Shell Theor Chem Account Orbital Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hylleraas EA (1929) Z Phys 54: 347CrossRefGoogle Scholar
  2. 2.
    Rychlewski, J (eds) (2003) Explicitly correlated wave functions in chemistry and physics. Progress in Theoretical Chemistry and Physics, vol. 13. Kluwer, DordrechtGoogle Scholar
  3. 3.
    Scott TC, Lüchow A, Bressanini D, Morgan JD III (2007) Phys Rev A 75: 060101CrossRefGoogle Scholar
  4. 4.
    Persson BJ, Taylor PR (1996) J Chem Phys 105: 5915CrossRefGoogle Scholar
  5. 5.
    Polly R, Werner H-J, Dahle P, Taylor PR (2006) J Chem Phys 124: 234107CrossRefGoogle Scholar
  6. 6.
    Dahle P, Helgaker T, Jonsson D, Taylor PR (2007) Phys Chem Chem Phys 9: 3112CrossRefGoogle Scholar
  7. 7.
    Cencek W, Rychlewski J (1993) J Chem Phys 98: 1252CrossRefGoogle Scholar
  8. 8.
    Cencek W, Rychlewski J (1995) J Chem Phys 102: 2533CrossRefGoogle Scholar
  9. 9.
    Kutzelnigg W (1985) Theor Chim Acta 68: 445CrossRefGoogle Scholar
  10. 10.
    Klopper W, Manby FR, Ten-No S, Valeev EF (2006) Int Rev Phys Chem 25: 427CrossRefGoogle Scholar
  11. 11.
    Werner H-J, Adler TB, Manby FR (2007) J Chem Phys 126: 164102CrossRefGoogle Scholar
  12. 12.
    Klopper W, Samson CCM (2002) J Chem Phys 116: 6397CrossRefGoogle Scholar
  13. 13.
    Valeev EF (2004) Chem Phys Lett 395: 190CrossRefGoogle Scholar
  14. 14.
    Ten-no S (2004) Chem Phys Lett 398: 56CrossRefGoogle Scholar
  15. 15.
    Manby FR, Werner H-J, Adler TB, May AJ (2006) J Chem Phys 124: 094103CrossRefGoogle Scholar
  16. 16.
    Kedžuch S, Milko M, Noga J (2005) Int J Quantum Chem 105: 929CrossRefGoogle Scholar
  17. 17.
    Turbomole, Version 5.10 (January 2008), Turbomole GmbH. http://www.turbomole.com (the MP2-F12 program has not yet been released)
  18. 18.
    Tew DP, Klopper W, Manby FR (2007) J Chem Phys 127: 174105CrossRefGoogle Scholar
  19. 19.
    Klopper W (1991) Chem Phys Lett 186: 583CrossRefGoogle Scholar
  20. 20.
    Klopper W, Kutzelnigg W (1987) Chem Phys Lett 134: 17CrossRefGoogle Scholar
  21. 21.
    Kato T (1957) Commun Pure Appl Math 10: 151CrossRefGoogle Scholar
  22. 22.
    Ten-no S (2004) J Chem Phys 121: 117CrossRefGoogle Scholar
  23. 23.
    Ahlrichs R (2006) Phys Chem Chem Phys 8: 3072CrossRefGoogle Scholar
  24. 24.
    Obara S, Saika A (1985) J Chem Phys 84: 3963CrossRefGoogle Scholar
  25. 25.
    Höfener S, Bischoff FA, Glöß A, Klopper W (2008) Phys Chem Chem Phys (accepted for publication)Google Scholar
  26. 26.
    Ten-no S (2007) J Chem Phys 126: 014108CrossRefGoogle Scholar
  27. 27.
    Manby FR (2003) J Chem Phys 119: 4607CrossRefGoogle Scholar
  28. 28.
    Glöß A (2007) Ph.D. thesis, Universität Karlsruhe (TH), KarlsruheGoogle Scholar
  29. 29.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162: 165CrossRefGoogle Scholar
  30. 30.
    Hättig C, Weigend F (2000) J Chem Phys 113: 5154CrossRefGoogle Scholar
  31. 31.
    Weigend F, Ahlrichs R (2005) Phys Chem Chem Phys 7: 3297CrossRefGoogle Scholar
  32. 32.
    Tew DP, Klopper W (2006) J Chem Phys 125: 094302CrossRefGoogle Scholar
  33. 33.
    Dunning TH (1989) J Chem Phys 90: 1007CrossRefGoogle Scholar
  34. 34.
    Woon DE, Dunning TH (1993) J Chem Phys 98: 1358CrossRefGoogle Scholar
  35. 35.
    Dunning TH, Peterson KA, Wilson AK (2001) J Chem Phys 114: 9244CrossRefGoogle Scholar
  36. 36.
    Wilson AK, Woon DE, Peterson KA, Dunning TH (1999) J Chem Phys 110: 7667CrossRefGoogle Scholar
  37. 37.
    Peterson KA (2003) J Chem Phys 119: 11099CrossRefGoogle Scholar
  38. 38.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113: 2563CrossRefGoogle Scholar
  39. 39.
    Hellweg A, Hättig C, Höfener S, Klopper W (2007) Theor Chem Acc 117: 587CrossRefGoogle Scholar
  40. 40.
    Weigend F, Köhn A, Hättig C (2002) J Chem Phys 116: 3175CrossRefGoogle Scholar
  41. 41.
    Tew DP, Klopper W (2005) J Chem Phys 123: 074101CrossRefGoogle Scholar
  42. 42.
    Valeev EF (2006) J Chem Phys 125: 244106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Florian A. Bischoff
    • 1
  • Sebastian Höfener
    • 1
  • Andreas Glöß
    • 1
  • Wim Klopper
    • 1
    Email author
  1. 1.Center for Functional Nanostructures (CFN) and Institute of Physical ChemistryUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations