Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 467–478 | Cite as

Theoretical study of the biologically important dioxo diiron diamond core structures

  • Lisa M. Pérez
  • Charles Edwin Webster
  • Arthur A. Low
  • Michael B. Hall
Regular Article

Abstract

Density functional theory calculations were used to investigate synthetic complexes with diiron dioxo diamond cores and models for intermediates in the catalytic cycle of methane monooxygenase (MMO). The synthetic complexes share an antiferromagnetically coupled diiron dioxo/hydroxo diamond core structure with the oxidized and reduced intermediates (Hox and Hred, respectively) of MMO. The DFT (B3P86) calculations on model complexes of the synthetic models, with ferromagnetic coupling, reproduce the crystal structure data to within 0.05 Å and 5° for the diamond core parameters. The crystal structures of Hox extracted from two different bacteria (Bath and OB3b) indicate that Hox has either two bridging hydroxy ligands or one hydroxy and one water bridge. The B3P86 calculations strongly suggest that both bridging ligands in Hox are hydroxy groups. The carboxylate shift established in the crystal structures of Hred was calculated to be a minimum at the BP86 level of theory.

Keywords

Density functional theory DFT Methane monooxygenase Computational 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Müller J and Lippard SJ (2001). Angew Chem Int Ed 40: 2782 CrossRefGoogle Scholar
  2. 2.
    Du Bois J, Mizoguchi TJ and Lippard SJ (2000). Coord Chem Rev 200: 443 CrossRefGoogle Scholar
  3. 3.
    Lipscomb JD and Que L Jr (1998). JBIC 3: 331–336 CrossRefGoogle Scholar
  4. 4.
    Wallar BJ and Lipscomb JD (1996). Chem Rev 96: 2625 CrossRefGoogle Scholar
  5. 5.
    Solomon EI, Brunold TC, Davis MI, Davis MI, Kemsley JN, Lee S, Lehnert N, Neese F, Skulan AJ, Yang Y and Zhou J (2000). Chem Rev 100: 235 CrossRefGoogle Scholar
  6. 6.
    Kovaleva EG, Neibergall MB, Chakrabary S and Lipscomb JD (2007). Acc Chem Res 40: 475–483 CrossRefGoogle Scholar
  7. 7.
    Nordlund P and Eklund H (1995). Curr Opin Struct Biol 5: 758 CrossRefGoogle Scholar
  8. 8.
    Riggs-Gelasco PJ, Shu L, Shuxian C, Burdi D, Huynh BH, Que L Jr, Stubbe J (1998). J Am Chem Soc 120: 849–860 CrossRefGoogle Scholar
  9. 9.
    Yachandra VK, Sauer K and Klein MP (1996). Chem Rev 96: 2927 CrossRefGoogle Scholar
  10. 10.
    Yachandra VK, DeRose VJ, Latimer MJ, Mukerji I, Sauer K and Klein MP (1993). Science 260: 675 CrossRefGoogle Scholar
  11. 11.
    Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J and Hox WGJ (1994). Proteins: Struct, Funct, Genet 19: 302–309 CrossRefGoogle Scholar
  12. 12.
    Magnus KA, Ton-That H and Carpenter JE (1994). Chem Rev 94: 727–735 CrossRefGoogle Scholar
  13. 13.
    Solomon EI, Sundaram UM and Machonkin RE (1996). Chem Rev 96: 2563 CrossRefGoogle Scholar
  14. 14.
    Baldwin MJ, Stemmler TL, Riggs-Gelasco PJ, Kirk ML, Penner-Hahn JE and Pecoraro VL (1994). J Am Chem Soc 116: 11349 CrossRefGoogle Scholar
  15. 15.
    Glerup J, Goodson PA, Hazell A, Hazell R, Hodgson DJ, McKenzie CJ, Michelsen K, Rychlewska U and Toftlund H (1994). Inorg Chem 33: 4105 CrossRefGoogle Scholar
  16. 16.
    Kitajima N, Singh UP, Amagai H, Osawa M and Moro-oka Y (1991). J Am Chem Soc 112: 7757 CrossRefGoogle Scholar
  17. 17.
    Goodson PA, Oki AR, Glerup J and Hodgson DJ (1990). J Am Chem Soc 112: 6248 CrossRefGoogle Scholar
  18. 18.
    Stebler M, Ludi A and Bürgi HB (1986). Inorg Chem 25: 4743 CrossRefGoogle Scholar
  19. 19.
    MacMurdo VL, Zheng H and Que L Jr (2000). Inorg Chem 39: 2254 CrossRefGoogle Scholar
  20. 20.
    Petasis D, Hsu H, Dong Y, Shu L, Young VG Jr and Que L Jr (1999). J Am Chem Soc 121: 5230 CrossRefGoogle Scholar
  21. 21.
    Zheng H, Zang D, Young VG Jr and Que L Jr (1999). J Am Chem Soc 121: 2226 CrossRefGoogle Scholar
  22. 22.
    Zang Y, Dong Y, Que L Jr, Kauffmann K, Münck E (1995). J Am Chem Soc 117: 1169 CrossRefGoogle Scholar
  23. 23.
    Dong Y, Fujii H, Hendrick MP, Leising RA, Pan G, Randall CR, Wilkinson EC, Zang Y, Que L Jr, Fox BG, Kauffmann K, Münck E (1995). J Am Chem Soc 117: 2778 CrossRefGoogle Scholar
  24. 24.
    Zang Y, Pan G, Gaofeng P, Que L Jr, Fox BG, Münck E (1994). J Am Chem Soc 116: 3653 CrossRefGoogle Scholar
  25. 25.
    Lee D and Lippard SJ (2001). J Am Chem Soc 19: 4611 CrossRefGoogle Scholar
  26. 26.
    He C and Lippard SJ (2001). J Inorg Chem 47: 1414 CrossRefGoogle Scholar
  27. 27.
    Barrios AM and Lippard SJ (2001). Inorg Chem 40: 1060 CrossRefGoogle Scholar
  28. 28.
    He C and Lippard SJ (2000). J Am Chem Soc 122: 184 CrossRefGoogle Scholar
  29. 29.
    Lee D, Du Bois J, Petasis D, Hendrich MP, Krebs C, Hanh Huynh B and Lippard SJ (1999). J Am Chem Soc 42: 9893 CrossRefGoogle Scholar
  30. 30.
    Mizoguchi TJ, Davydov RM and Lippard SJ (1999). J Inorg Chem 38: 4098 CrossRefGoogle Scholar
  31. 31.
    Lee D and Lippard SJ (1998). J Am Chem Soc 120: 12153 CrossRefGoogle Scholar
  32. 32.
    Whittington DA and Lippard SJ (2001). J Am Chem Soc 123: 827 CrossRefGoogle Scholar
  33. 33.
    Rosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ and Frederick CA (1997). Proteins 29: 141 CrossRefGoogle Scholar
  34. 34.
    Rosenzweig AC, Nordlund P, Takahara PM, Fredrick CA and Lippard SJ (1995). Chem Biol 2: 409 CrossRefGoogle Scholar
  35. 35.
    Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD and Ohlendorf DH (1997). Protein Sci 6: 556 CrossRefGoogle Scholar
  36. 36.
    Lui KE, Valentine AM, Qui D, Edmondson DE, Appelman EH, Spiro TG and Lippard SJ (1995). J Am Chem Soc 117: 4997 CrossRefGoogle Scholar
  37. 37.
    Shu L, Neshein JC, Kauffmann K, Münck E, Lipscomb JD and Que L (1997). Science 275: 515 CrossRefGoogle Scholar
  38. 38.
    Wilkinson EC, Dong Y, Zang Y, Fujii H, Fraczkeiwicz R, Fraczkiewicz G, Czernuszewicz RS, Que L Jr (1998). J Am Chem Soc 120: 955–962 CrossRefGoogle Scholar
  39. 39.
    Zang Y, Pan G, Que L Jr (1994). J Am Chem Soc 116: 3653–3654 CrossRefGoogle Scholar
  40. 40.
    MacMurdo VL, Zheng H, Que L Jr (2000). Inorg Chem 39: 2254 CrossRefGoogle Scholar
  41. 41.
    Gherman BF, Dunietz BD, Whittington DA, Lippard SJ and Friesner RA (2001). J Am Chem Soc 123: 3836 CrossRefGoogle Scholar
  42. 42.
    Dunietz BD, Beachy MD, Cao Y, Whittington DA, Lippard SJ and Friesner RA (2000). J Am Chem Soc 122: 2828 CrossRefGoogle Scholar
  43. 43.
    Torrent M, Mogi K, Basch H, Musaev DG and Morokuma K (2001). J Phys Chem B 105: 8616 CrossRefGoogle Scholar
  44. 44.
    Basch H, Musaev DG and Morokuma K (2001). J Phys Chem B 105: 8452 CrossRefGoogle Scholar
  45. 45.
    Torrent M, Musaev DG and Morokuma K (2001). J Phys Chem B 105: 4453 CrossRefGoogle Scholar
  46. 46.
    Torrent M, Musaev DG and Morokuma K (2001). J Phys Chem B 105: 322 CrossRefGoogle Scholar
  47. 47.
    Basch H, Mogi K, Musaev DG and Morokuma K (1999). J Am Chem Soc 121: 7249 CrossRefGoogle Scholar
  48. 48.
    Siegbahn PEM (2001). J Biol Inorg Chem 6: 27 CrossRefGoogle Scholar
  49. 49.
    Siegbahn PEM (1999). Inorg Chem 38: 2880 CrossRefGoogle Scholar
  50. 50.
    Siegbahn PEM and Crabtree RH (1997). J Am Chem Soc 199: 3103 CrossRefGoogle Scholar
  51. 51.
    Yoshizawa K and Hoffmann R (1996). Inorg Chem 35: 2409 CrossRefGoogle Scholar
  52. 52.
    Yoshizawa K, Yokomichi Y, Shiota Y, Ohta T, Yamabe T (1997) Chem Lett 587Google Scholar
  53. 53.
    Yoshizawa K, Ohta T, Yamabe T and Hoffmann R (1997). J Am Chem Soc 119: 12311 CrossRefGoogle Scholar
  54. 54.
    Lovell T, Li J and Noodleman L (2001). Inorg Chem 40: 5267 CrossRefGoogle Scholar
  55. 55.
    Lovell T, Li J and Noodleman L (2001). Inorg Chem 40: 5267 CrossRefGoogle Scholar
  56. 56.
    Mahapatra S, Halfen JA, Wilkinson EC, Pan G, Wang X, Young VG Jr, Cramer CJ, Que L Jr, Tolman WB (1996). J Am Chem Soc 118: 11555 CrossRefGoogle Scholar
  57. 57.
    Bérces A (1997). Inorg Chem 36: 4831 CrossRefGoogle Scholar
  58. 58.
    Lind R, Siegbahn PEM and Crabtree RH (1999). J Phys Chem B 103: 1193 CrossRefGoogle Scholar
  59. 59.
    Himo F and Siegbahn PEM (2000). J Phys Chem B 104: 7502 CrossRefGoogle Scholar
  60. 60.
    Siegbahn PEM, Eriksson L, Himo F and Pavlov M (1998). J Phys Chem B 102: 10622 CrossRefGoogle Scholar
  61. 61.
    Siegbahn PEM (2000). Inorg Chem 39: 2923 CrossRefGoogle Scholar
  62. 62.
    Siegbahn PEM and Crabtree RH (1999). J Am Chem Soc 121: 117 CrossRefGoogle Scholar
  63. 63.
    Blomberg MRA, Siegbahn PEM, Styring S, Babcock G, Åkermark B and Korall P (1997). J Am Chem Soc 119: 8285 CrossRefGoogle Scholar
  64. 64.
    Noodleman L and Case DA (1992). Adv Inorg Chem 38: 423 CrossRefGoogle Scholar
  65. 65.
    Noodleman L (1981). J Chem Phys 74: 5737 CrossRefGoogle Scholar
  66. 66.
    Parr RG and Yang W (1989). Density-functional theory of atoms and molecules. Oxford Univeristy Press, Oxford Google Scholar
  67. 67.
    Becke AD (1988). Phys Rev A 38: 3098 CrossRefGoogle Scholar
  68. 68.
    Becke AD (1993). J Chem Phys 98: 1372 CrossRefGoogle Scholar
  69. 69.
    Becke AD (1993). J Chem Phys 98: 5648 CrossRefGoogle Scholar
  70. 70.
    Perdew JP (1992). Phys Rev B 45: 13244 CrossRefGoogle Scholar
  71. 71.
    Gaussian 98 (Rev. A.6), Gaussian 03, Revision D.02, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr J A, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian, Inc., WallingfordGoogle Scholar
  72. 72.
    Dunning TH Jr, Hay PJ (1976). Modern theoretical chemistry. Plenum, New York, pp, 1–28 Google Scholar
  73. 73.
    Hay PJ and Wadt WR (1985). J Chem Phys 82: 270 CrossRefGoogle Scholar
  74. 74.
    Hay PJ and Wadt WR (1985). J Chem Phys 82: 284 CrossRefGoogle Scholar
  75. 75.
    Hay PJ and Wadt WR (1985). J Chem Phys 82: 299 CrossRefGoogle Scholar
  76. 76.
    Couty M and Hall MB (1996). J Comput Chem 17: 1359 CrossRefGoogle Scholar
  77. 77.
    Baldwin MJ, Stemmler TL, Riggs-Gelasco PJ, Kirk ML, Penner-Hahn JE and Pecoraro VL (1994). J Am Chem Soc 116: 11349–11356 CrossRefGoogle Scholar
  78. 78.
    Rosenzweig AC, Frederick CA, Lippard SJ and Nordlund P (1993). Nature 366: 537–543 CrossRefGoogle Scholar
  79. 79.
    Rosenzweig AC, Frederick A, Lippard SJ (1996) In: Lidstrom ME, Tabita R (eds) Microbial growth on C1 compounds. Kluwer Academic Publishers, oston, pp 141–149.Google Scholar
  80. 80.
    Petersson GA, Bennett A, Tensfeldt TG, Al-Laham MA, Shirley WA and Mantzars J (1988). J Chem Phys 89: 2193 CrossRefGoogle Scholar
  81. 81.
    Ditchefield R, Hehre WJ and Pople JA (1971). J Chem Phys 54: 724 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Lisa M. Pérez
    • 1
  • Charles Edwin Webster
    • 2
  • Arthur A. Low
    • 3
  • Michael B. Hall
    • 4
  1. 1.Laboratory for Molecular SimulationTexas A&M UniversityCollege StationUSA
  2. 2.Department of ChemistryThe University of MemphisMemphisUSA
  3. 3.Department of ChemistryTarleton State UniversityStephenvilleUSA
  4. 4.Department of ChemistryTexas A&M UniversityCollege StationUSA

Personalised recommendations