Theoretical Chemistry Accounts

, Volume 120, Issue 4–6, pp 351–361 | Cite as

Analysis of the metal–ligand bonds in [Mo(X)(NH2)3] (X = P, N, PO, and NO), [Mo(CO)5(NO)]+, and [Mo(CO)5(PO)]+

  • Giovanni F. Caramori
  • Gernot FrenkingEmail author
Regular Article


Quantum chemical calculations at the DFT level have been carried out for model complexes [Mo(P)(NH2)3] (1), [Mo(N)(NH2)3] (2), [Mo(PO)(NH2)3] (3), [Mo(NO)(NH2)3] (4), [Mo(CO)5(PO)]+ (5), and [Mo(CO)5(NO)]+ (6). The equilibrium geometries and the vibration frequencies are in good agreement with experimental and previous theoretical results. The nature of the Mo–PO, Mo–NO, Mo–PO+, Mo–NO+, Mo–P, and Mo–N bond has been investigated by means of the AIM, NBO and EDA methods. The NBO and EDA data complement each other in the interpretation of the interatomic interactions while the numerical AIM results must be interpreted with caution. The terminal Mo–P and Mo–N bonds in 1 and 2 are clearly electron-sharing triple bonds. The terminal Mo–PO and Mo–NO bonds in 3 and 4 have also three bonding contributions from a σ and a degenerate π orbital where the σ components are more polarized toward the ligand end and the π orbitals are more polarized toward the metal end than in 1 and 2. The EDA calculations show that the π bonding contributions to the Mo–PO and Mo–NO bonds in 3 and 4 are much more important than the σ contributions while σ and π bonding have nearly equal strength in the terminal Mo–P and Mo–N bonds in 1 and 2. The total (NH2)3Mo–PO binding interactions are stronger than for (NH2)3Mo–P which is in agreement with the shorter Mo–PO bond. The calculated bond orders suggest that there are only (NH2)3Mo–PO and (NH2)3Mo–NO double bonds which comes from the larger polarization of the σ and π contributions but a closer inspection of the bonding shows that these bonds should also be considered as electron-sharing triple bonds. The bonding situation in the positively charged complexes [(CO)5Mo–(PO)]+ and [(CO)5Mo–(NO)]+ is best described in terms of (CO)5Mo → XO+ donation and (CO)5Mo ← XO+ backdonation (X = P, N) using the Dewar–Chatt–Duncanson model. The latter bonds are stronger and have a larger π character than the Mo-CO bonds.


Nitric oxide Phosphorus oxide Molybdenum complexes Energy decomposition analysis AIM NBO 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

214_2008_435_MOESM1_ESM.pdf (469 kb)
ESM (PDF 469 kb)


  1. 1.
    Verma RD (1972) Can J Phys 50: 1579Google Scholar
  2. 2.
    Verma RD (1973) Can J Phys 51: 322Google Scholar
  3. 3.
    Prudhomme JC, Coquart B (1974) Can J Phys 52: 2150Google Scholar
  4. 4.
    Haraguchi H, Fowler WK, Johnson DJ, Winefordner JD (1976) Spectrochem Acta Part A 32A: 1539CrossRefGoogle Scholar
  5. 5.
    Dyke JM, Morris A, Ridha A (1982) J Chem Soc Faraday Trans 2(78): 207Google Scholar
  6. 6.
    Kawaguchi K, Saito S, Hirota E (1983) J Chem Phys 79: 629CrossRefGoogle Scholar
  7. 7.
    Kanata H, Yamamoto S, Saito S (1988) J Mol Spectrosc 131: 89CrossRefGoogle Scholar
  8. 8.
    Robertson EG, McNaughton D (2003) J Phys Chem A 107: 642CrossRefGoogle Scholar
  9. 9.
    Midda S, Das AK (2004) Int J Quantum Chem 98: 447CrossRefGoogle Scholar
  10. 10.
    Turner BE (1991) Astrophys J 376: 573CrossRefGoogle Scholar
  11. 11.
    Atalla RM, Singh PD (1987) Astrophys Space Sci 133: 267CrossRefGoogle Scholar
  12. 12.
    Matthews HE, Feldman PA, Bernath PF (1987) Astrophys J 312: 358CrossRefGoogle Scholar
  13. 13.
    Davies JE, Klunduk MC, Mays MJ, Raithby PR, Shields GP, Tompkin PK (1997) J Chem Soc Dalton Trans 715Google Scholar
  14. 14.
    Scherer OJ, Weigel S, Wolmershäuser G (1999) Heteroat Chem 10: 622CrossRefGoogle Scholar
  15. 15.
    Scherer OJ, Weigel S, Wolmershäuser G (1999) Angew Chem Int Ed 38: 3688CrossRefGoogle Scholar
  16. 16.
    Corrigan JF, Doherty S, Taylor NJ, Carty AJ (1994) J Am Chem Soc 116: 9799CrossRefGoogle Scholar
  17. 17.
    Wang W, Corrigan JF, Doherty S, Enright GD, Taylor NJ, Carty AJ (1996) Organometallics 15: 2770CrossRefGoogle Scholar
  18. 18.
    Johnson MJA, Odom AL, Cummins CC (1997) Chem Commun 1523Google Scholar
  19. 19.
    Yamamoto JH, Udachin KA, Enright GD, Carty AJ (1998) Chem Comm 2259Google Scholar
  20. 20.
    Yamamoto JH, Scoles L, Udachin KA, Enright GD, Carty AJ (2000) J Organomet Chem 600: 84CrossRefGoogle Scholar
  21. 21.
    Scoles L, Yamamoto JH, Brissieux L, Sterenberg BT, Udachin KA, Carty AJ (2001) Inorg Chem 40: 6731CrossRefGoogle Scholar
  22. 22.
    Tfouni E, Krieger M, McGarvey BR, Franco DW (2003) Coord Chem Rev 236: 57 (and references therein)CrossRefGoogle Scholar
  23. 23.
    Ford PC, Lorkovic IM (2002) Chem Rev 102: 993CrossRefGoogle Scholar
  24. 24.
    Wang PG, Xian M, Tang X, Wu X, Wen Z, Cai T, Janczuk A (2002) Chem Rev 102: 1091CrossRefGoogle Scholar
  25. 25.
    Lorkovic IM, Miranda KM, Lee B, Bernhard S, Schoonover JR, Ford PC (1998) J Am Chem Soc 120: 11674CrossRefGoogle Scholar
  26. 26.
    Borges SSS, Davanzo CU, Castellano EE, Z-Schpector J, Silva SC, Franco DW (1998) Inorg Chem 37: 2670CrossRefGoogle Scholar
  27. 27.
    Thiemens MW, Trogler WC (1991) Science 251: 932CrossRefGoogle Scholar
  28. 28.
    Laplaza CE, Odom AL, Davis WM, Cummins CC (1995) J Am Chem Soc 117: 4999CrossRefGoogle Scholar
  29. 29.
    Maxwell LR, Hendricks SB, Deming LS (1937) J Chem Phys 5: 626CrossRefGoogle Scholar
  30. 30.
    Hampson GC, Stosick AJ (1938) J Am Chem Soc 60: 1814CrossRefGoogle Scholar
  31. 31.
    Scherer OJ, Braun J, Walther P, Heckmann G, Wolmershäuser G (1991) Angew Chem Int Ed Engl 30: 852CrossRefGoogle Scholar
  32. 32.
    Lohr LL (1984) J Phys Chem 88: 5569CrossRefGoogle Scholar
  33. 33.
    Butler K, Kawaguchi EH (1983) J Mol Spectrosc 101: 161CrossRefGoogle Scholar
  34. 34.
    Andrews L, McCluskey M, Mielke Z, Withnall R (1990) J Mol Struct 222: 95 (and references therein)CrossRefGoogle Scholar
  35. 35.
    Hermann AW (1991) Angew Chem Int Ed Engl 30: 818CrossRefGoogle Scholar
  36. 36.
    Laplaza CE, Davis WM, Cummins CC (1995) Angew Chem Int Ed Engl 34: 2042CrossRefGoogle Scholar
  37. 37.
    Zanetti NC, Schrock RR, Davis WM (1995) Angew Chem Int Ed Engl 34: 2044CrossRefGoogle Scholar
  38. 38.
    Bérces A, Koentjoro O, Sterenberg BT, Yamamoto JH, Tse J, Carty AJ (2000) Organometallics 19: 4336CrossRefGoogle Scholar
  39. 39.
    Foerstner J, Olbrich F, Butenschon H (1996) Angew Chem Int Ed Engl 35: 1234CrossRefGoogle Scholar
  40. 40.
    Wagener T, Frenking G (1998) Inorg Chem 37: 1805CrossRefGoogle Scholar
  41. 41.
    Dewar MJS (1951) Bull Soc Chim Fr 18: C79Google Scholar
  42. 42.
    Chatt J, Duncanson LA (1953) J Chem Soc 2929Google Scholar
  43. 43.
    Frenking G (2001) J Organomet Chem 635: 9CrossRefGoogle Scholar
  44. 44.
    Frenking G (2002) In: Leigh GJ, Winterton N (eds) Modern coordination chemistry: the legacy of Joseph Chatt, The Royal Society, London, p 111Google Scholar
  45. 45.
    Bader RFW (1991) Chem Rev 91: 893CrossRefGoogle Scholar
  46. 46.
    Bader RFW (1990) Atoms in molecules. Claredon Press, OxfordGoogle Scholar
  47. 47.
    Reed AE, Weinhold F (1983) J Chem Phys 78: 4066CrossRefGoogle Scholar
  48. 48.
    Becke AD (1988) Phys Rev A 38: 3098CrossRefGoogle Scholar
  49. 49.
    Perdew JP (1986) Phys Rev B 33: 8822CrossRefGoogle Scholar
  50. 50.
    Snijders JG, Baerends EJ, Vernooijs P (1982) At Nucl Data Tables 26: 483CrossRefGoogle Scholar
  51. 51.
    Krijn J, Baerends EJ (1984) Fit functions in the HFS method, internal report (in Dutch), Vrije Universiteit, AmsterdamGoogle Scholar
  52. 52.
    van Lenthe E, Baerends EJ, Snijders JG (1993) J Chem Phys 99: 4597CrossRefGoogle Scholar
  53. 53.
    van Lenthe E, Baerends EJ, Snijders JG (1996) J Chem Phys 105: 6505CrossRefGoogle Scholar
  54. 54.
    van Lenthe E, van Leeuwen R, Baerends EJ, Snijders JG (1996) Int J Quantum Chem 57: 281CrossRefGoogle Scholar
  55. 55.
    Bickelhaupt FM, Baerends EJ (2000) Rev Comput Chem 15: 1CrossRefGoogle Scholar
  56. 56.
    te Velde G, Bickelhaupt FM, Baerends EJ, van Gisbergen SJA, Fonseca Guerra C, Snijders JG, Ziegler T (2001) J Comput Chem 22: 931CrossRefGoogle Scholar
  57. 57.
    Morokuma K (1971) J Chem Phys 55: 1236CrossRefGoogle Scholar
  58. 58.
    Morokuma K (1977) Acc Chem Res 10: 294CrossRefGoogle Scholar
  59. 59.
    Ziegler T, Rauk A (1977) Theor Chim Acta 46: 1Google Scholar
  60. 60.
    Esterhuysen C, Frenking G (2004) Theor Chem Acc 111: 81Google Scholar
  61. 61.
    Kovács A, Esterhuysen C, Frenking G (2005) Chem Eur J 11: 1813CrossRefGoogle Scholar
  62. 62.
    Frenking G, Wichmann K, Fröhlich N, Loschen C, Lein M, Frunzke J, Rayón VM (2003) Coord Chem Rev 55: 238–239Google Scholar
  63. 63.
    Frenking G, Fröhlich N (2000) Chem Rev 100: 717CrossRefGoogle Scholar
  64. 64.
    Lein M, Frenking G (2005) In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and applications of computational chemistry: the first 40 years. Elsevier, Amsterdam, p 291Google Scholar
  65. 65.
    Heitler W, London F (1927) Z Phys 44: 455CrossRefGoogle Scholar
  66. 66.
    Bader RFW (1995) AIMPAC—Source code obtained from the AIMPAC site at McMaster University, Hamilton
  67. 67.
    Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001) NBO 5.0. Theoretical Chemistry Institute, University of Wisconsin, MadisonGoogle Scholar
  68. 68.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Gaussian, WallingfordGoogle Scholar
  69. 69.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77: 123CrossRefGoogle Scholar
  70. 70.
    Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97: 2571CrossRefGoogle Scholar
  71. 71.
    Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100: 5829CrossRefGoogle Scholar
  72. 72.
    Laplaza CE, Johnson MJA, Peters JC, Odom AL, Kim E, Cummins CC, George GN, Pickering IJ (1996) J Am Chem Soc 118: 8623CrossRefGoogle Scholar
  73. 73.
    Figueroa JS, Piro NA, Clough CR, Cummins CC (2006) J Am Chem Soc 128: 940CrossRefGoogle Scholar
  74. 74.
    Ehlers AW, Dapprich S, Vyboishchikov SF, Frenking G (1996) Organometallics 15: 105CrossRefGoogle Scholar
  75. 75.
    Wiberg K (1968) Tetrahedron 24: 1083CrossRefGoogle Scholar
  76. 76.
    Cremer D, Kraka E (1984) Angew Chem Int Ed Engl 23: 627CrossRefGoogle Scholar
  77. 77.
    Frenking G, Wichmann K, Fröhlich N, Grobe J, Golla W, Le Van D, Krebs B, Läge M (2002) Organometallics 21: 2921CrossRefGoogle Scholar
  78. 78.
    Fischer RA, Schulte MM, Weiß J, Zsolnai L, Jacobi A, Huttner G, Frenking G, Boehme C, Vyboishchikov SF (1998) J Am Chem Soc 120: 1237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Fachbereich ChemiePhilipps-UniversitätMarburgGermany

Personalised recommendations