Advertisement

Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 177–190 | Cite as

A configurational and conformational study of aframodial and its diasteriomers via experimental and theoretical VA and VCD spectroscopies

  • K. J. Jalkanen
  • Julian D. Gale
  • P. R. Lassen
  • L. Hemmingsen
  • A. Rodarte
  • I. M. Degtyarenko
  • R. M. Nieminen
  • S. Brøgger Christensen
  • M. Knapp-Mohammady
  • S. Suhai
Regular Article

Abstract

In this work we present the experimental and theoretical vibrational absorption (VA) and the theoretical vibrational circular dichroism (VCD) spectra for aframodial. In addition, we present the theoretical VA and VCD spectra for the diasteriomers of aframodial. Aframodial has four chiral centers and hence has 24 = 16 diasteriomers, which occur in eight pairs of enantiomers. In addition to the four chiral centers, there is an additional chirality due to the helicity of the entire molecule, which we show by presenting 12 configurations of the 5S,8S,9R,10S enantiomer of aframodial. The VCD spectra for the diasteriomers and the 12 configurations of one enantiomer are shown to be very sensitive not only to the local stereochemistry at each chiral center, but in addition, to the helicity of the entire molecule. Here one must be careful in analyzing the signs of the VCD bands due to the ‘non-chiral’ chromophores in the molecule, since one has two contributions; one due to the inherent chirality at the four chiral centers, and one due to the chirality of the side chain groups in specific conformers, that is, its helicity. Theoretical simulations for various levels of theory are compared to the experimental VA recorded to date. The VCD spectra simulations are presented, but no experimental VCD and Raman spectra have been reported to date, though some preliminary VCD measurements have been made in Stephens’ lab in Los Angeles. The flexible side chain is proposed to be responsible for the small size of the VCD spectra of this molecule, even though the chiral part of the molecule is very rigid and has four chiral centers. In addition to VCD and Raman measurements, Raman optical activity (ROA) measurements would be very enlightening, as in many cases bands which are weak in both the VA and VCD, may be large in the Raman and/or ROA spectra. The feasibility of using vibrational spectroscopy to monitor biological structure, function and activity is a worthy goal, but this work shows that a careful theoretical analysis is also required, if one is to fully utilize and understand the experimental results. The reliability, reproduceability and uniqueness of the vibrational spectroscopic experiments and the information which can be gained from them is discussed, as well as the details of the computation of VA, VCD and Raman (and ROA) spectroscopy for molecules of the complexity of aframodial, which have multiple chiral centers and flexible side chains.

Keywords

Conformational analysis Vibrational spectroscopy VA VCD DFT PBE B3LYP Aframodial 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kimbu SF, Njimi TK, Sondengam BL, Akinniyi JA, Connolly JD (1979) J Chem Soc Perkin Trans I, pp 1303–1304Google Scholar
  2. 2.
    Marlier M, Le Guellec G, Lognay G, Wathelet JP and Severin M (1993). Planta Med 59: 455 CrossRefGoogle Scholar
  3. 3.
    Nyasse B and Lenta-Ndjakou B (2000). Pharmazie 55: 703 Google Scholar
  4. 4.
    Duker-Eshun G, Jaroszewski JW, Asomaning WA, Oppong-Boachie F, Olsen CE and Christensen SB (2002). Planta Med 68: 642 CrossRefGoogle Scholar
  5. 5.
    Tanabe M, Chen Y-D, Saito K and Kano Y (1993). Chem Pharmaceutial Bull 41: 710 Google Scholar
  6. 6.
    Klyne W and Buckingham J (1978). Atlas of Stereochemistry, 2nd edn. vol 1. Chapman & Hall, London Google Scholar
  7. 7.
    Barltrop JA, Bigley DB (1959) Chem Ind London, pp 1378–1379Google Scholar
  8. 8.
    Jalkanen KJ, Bohr HG, Suhai S (1997) In: Proceedings of the international symposium on theoretical and computational genome research. Suhai S (ed) Plenum Press, New York, pp 255–277Google Scholar
  9. 9.
    Tajkhorshid E, Jalkanen KJ and Suhai S (1998). J Phys Chem B 102: 5899 CrossRefGoogle Scholar
  10. 10.
    Frimand K, Jalkanen KJ, Bohr HG and Suhai S (2000). Chem Phys 255: 165 CrossRefGoogle Scholar
  11. 11.
    Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E and Suhai S (2001). Chem Phys 265: 125 CrossRefGoogle Scholar
  12. 12.
    Jalkanen KJ, Degtyarenko IM, Nieminen RM, Cao X, Nafie LA, Zhu F, Barron LD (2007) Theor Chem Acc doi: 10.1007/s00214-007-0361-z
  13. 13.
    Jalkanen KJ, Suhai S (1996) Chem Phys 208 (1996)Google Scholar
  14. 14.
    Deng Z, Polavarapu PL, Ford SJ, Hecht L, Barron LD, Ewig CS and Jalkanen KJ (1996). J Phys Chem 100: 2025 CrossRefGoogle Scholar
  15. 15.
    Han W-G, Jalkanen KJ, Elstner M and Suhai S (1998). J Phys Chem B 102: 2587 CrossRefGoogle Scholar
  16. 16.
    Bohr HG, Jalkanen KJ, Frimand K, Elstner M and Suhai S (1999). Chem Phys 246: 13 CrossRefGoogle Scholar
  17. 17.
    Knapp-Mohammady M, Jalkanen KJ, Nardi F, Wade RC and Suhai S (1999). Chem Phys 240: 63 CrossRefGoogle Scholar
  18. 18.
    Jalkanen KJ, Nieminen RM, Knapp-Mohammady M and Suhai S (2003). Int J Quantum Chem 92: 239 CrossRefGoogle Scholar
  19. 19.
    Bunte SW, Jensen GM, McNesby KL, Goodin DB, Chabalowski CF, Nieminen RM, Suhai S and Jalkanen KJ (2001). Chem Phys 265: 13 CrossRefGoogle Scholar
  20. 20.
    Jürgensen VW and Jalkanen KJ (2006). Phys Biol 3: S63 CrossRefGoogle Scholar
  21. 21.
    Jalkanen KJ, Jürgensen VW and Degtyarenko IM (2005). Adv Quantum Chemistry 50: 91 CrossRefGoogle Scholar
  22. 22.
    Jalkanen KJ (2003). J Phys Condens, Matter 15: S1823 CrossRefGoogle Scholar
  23. 23.
    Poon C-D, Samulski ET, Weise CF and Weisshaar JC (2000). J Am Chem Soc 122: 5642 CrossRefGoogle Scholar
  24. 24.
    Weise CF and Weisshaar JC (2003). J Phys Chem B 107: 3265 CrossRefGoogle Scholar
  25. 25.
    Kongsted J, Osted A, Mikkelsen KV and Christiansen O (2002). Chem Phys Lett 364: 379 CrossRefGoogle Scholar
  26. 26.
    Gibson DA, Ionova IV and Carter EA (1995). Chem Phys Lett 240: 261 CrossRefGoogle Scholar
  27. 27.
    Pakoulev A, Wang Z, Pang Y and Dlott DD (2003). Chem Phys Lett 380: 404 CrossRefGoogle Scholar
  28. 28.
    Chestnut DB (2003). Chem Phys Lett 380: 251 CrossRefGoogle Scholar
  29. 29.
    Elstner M, Hobza P, Suhai S and Kaxiras E (2001). J Chem Phys 114: 5149 CrossRefGoogle Scholar
  30. 30.
    Hamm P, Woutersen S and Rueping M (2002). Helvetica Chemica Acta 85: 3883 CrossRefGoogle Scholar
  31. 31.
    Woutersen S, Mu Y, Stock G and Hamm P (2001). PNAS 98: 11254 CrossRefGoogle Scholar
  32. 32.
    Woutersen S and Hamm P (2000). J Phys Chem B 104: 11316 CrossRefGoogle Scholar
  33. 33.
    Morita H, Itokawa H (1986) Chem Lett pp 1205–1208Google Scholar
  34. 34.
    Itokawa H, Morita M and Mihashi S (1980). Chem Pharm Bull 28: 3452 Google Scholar
  35. 35.
    Morita H and Itokawa H (1988). Planta Med 54: 117 CrossRefGoogle Scholar
  36. 36.
    Ngo KS and Brown GD (1998). Phytochemistry 47: 1117 CrossRefGoogle Scholar
  37. 37.
    Kimbu SF, Njimi TK, Sondengam BL, Akinniyi JA, Connolly JD (1979) J Chem Soc, Perkin TransGoogle Scholar
  38. 38.
    Ayafor JF, Tchuedem MHK, Nyasse B, Tillequin F and Anke H (1994). Pure Appl Chem 66: 2327 CrossRefGoogle Scholar
  39. 39.
    Morita H and Itokawa H (1988). Plant Med 54: 117 CrossRefGoogle Scholar
  40. 40.
    MacMillan J, Beale MH (1999) Diterpene biosynthesis, (Amsterdam Elsevier), Chap, Isoprenoids including carotenoids and steroids pp 217–243Google Scholar
  41. 41.
    Frisch Æ, Dennington III RD, Keith TA, Millam J, Nielsen AB, Holder AJ, Hiscocks J (1998) GaussView 2.0 Visualization Program, Gaussian, Inc., WallingfordGoogle Scholar
  42. 42.
    Devlin FJ and Stephens PJ (1987). Applied Spectroscopy 41: 1142 CrossRefGoogle Scholar
  43. 43.
    Jalkanen KJ, Gale JD, Jalkanen GJ, McIntosh DF, El-Azhary AA, Jensen GM (2007) Theor Chem Acc. doi: 10.1007/s00214-007-0391-6
  44. 44.
    Amos RD (1987). Ab initio methods in quantum chemistry, Chap. Molecular property derivatives. Wiley, New York, 99–153 Google Scholar
  45. 45.
    Amos RD, Handy NC, Jalkanen KJ and Stephens PJ (1987). Chem Phys Lett 133: 21 CrossRefGoogle Scholar
  46. 46.
    Amos RD (1984). Chem Phys Lett 108: 185 CrossRefGoogle Scholar
  47. 47.
    Amos RD, Jalkanen KJ and Stephens PJ (1988). J Phys Chem 92: 5571 CrossRefGoogle Scholar
  48. 48.
    Mead CA and Moscowitz A (1967). Int J Quantum Chem 1: 243 CrossRefGoogle Scholar
  49. 49.
    Amos RD (1986). Chem Phys Lett 124: 376 CrossRefGoogle Scholar
  50. 50.
    Jalkanen KJ, Stephens PJ, Lazzeretti P and Zanasi R (1988). J Chem Phys 90: 3204 CrossRefGoogle Scholar
  51. 51.
    Stephens PJ, Jalkanen KJ, Amos RD, Lazzeretti P and Zanasi R (1990). J Phys Chem 94: 1811 CrossRefGoogle Scholar
  52. 52.
    Amos RD (1982). Chem Phys Lett 87: 23 CrossRefGoogle Scholar
  53. 53.
    Nicu VP, Neugebauer J, Wolff SK, Baerends EJ (2007) Theor Chem Acc doi: 10.1007/s00214-006-0234-x
  54. 54.
    Deplazes E, van Bronswijk B, Zhu F, Barron LD, Ma S, Nafie LA, Jalkanen KJ (2007) Theor Chem Acc doi: 10.1007/s00214-007-0276-8
  55. 55.
    Hsu EC and Holzwarth G (1973). J Chem Phys 59: 4678 CrossRefGoogle Scholar
  56. 56.
    Nafie LA, Cheng JC and Stephens PJ (1975). J Am Chem Soc 97: 3842 CrossRefGoogle Scholar
  57. 57.
    Cheng JC, Nafie LA and Stephens PJ (1975). J Opt Soc Am 65: 1031 CrossRefGoogle Scholar
  58. 58.
    Nafie LA, Keiderling TA and Stephens PJ (1976). J Am Chem Soc 98: 2715 CrossRefGoogle Scholar
  59. 59.
    Holzwarth G, Hsu EC, Mosher HS, Faulkner TR and Moscowitz A (1974). J Am Chem Soc 96: 251 CrossRefGoogle Scholar
  60. 60.
    Keideling TA and Nafie LA (1976). Chem Phys Lett 41: 46 CrossRefGoogle Scholar
  61. 61.
    Schlosser DW, Devlin F, Jalkanen K and Stephens PJ (1982). Chem Phys Lett 88: 286 CrossRefGoogle Scholar
  62. 62.
    Bosnich B, Ozin G and Moscowitz (1972). J Am Chem Soc 94: 4750 CrossRefGoogle Scholar
  63. 63.
    Barron LD, Bogaard MP and Buckingham AD (1973). J Am Chem Soc 95: 603 CrossRefGoogle Scholar
  64. 64.
    Schellman JA (1973). J Chem Phys 58: 2882 CrossRefGoogle Scholar
  65. 65.
    Stephens PJ, Jalkanen KJ and Kawiecki RW (1990). J Am Chem Soc 112: 6518 CrossRefGoogle Scholar
  66. 66.
    Cohan NV and Hameka HF (1966). J Am Chem Soc 88: 2136 CrossRefGoogle Scholar
  67. 67.
    Stephens PJ (1985). J Phys Chem 89: 748 CrossRefGoogle Scholar
  68. 68.
    Stephens PJ (1987). J Phys Chem 91: 1712 CrossRefGoogle Scholar
  69. 69.
    Buckingham AD, Fowler PW and Galwas PA (1987). Chem Phys 112: 1 CrossRefGoogle Scholar
  70. 70.
    Craig DP and Thirunamachandran T (1978). Mol Phys 35: 825 CrossRefGoogle Scholar
  71. 71.
    Barron LD and Buckingham AD (1971). Mol Phys 20: 1111 CrossRefGoogle Scholar
  72. 72.
    Buckingham AD (1967). Adv Chem Phys 12: 107 CrossRefGoogle Scholar
  73. 73.
    Jalkanen KJ, Stephens PJ, Amos RD and Handy NC (1988). J Phys Chem 92: 1781 CrossRefGoogle Scholar
  74. 74.
    Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1993). J Chem Phys 98: 8873 CrossRefGoogle Scholar
  75. 75.
    Bak KL, Jørgensen P, Helgaker T, Ruud K and Jensen HJAa (1994). J Chem Phys 100: 6621 CrossRefGoogle Scholar
  76. 76.
    Bak KL, Devlin FJ, Ashvar CS, Taylor PR, Frisch MJ and Stephens PJ (1995). J Phys Chem 99: 14918 CrossRefGoogle Scholar
  77. 77.
    Hansen AE, Stephens PJ and Bouman TD (1991). J Phys Chem 95: 4255 CrossRefGoogle Scholar
  78. 78.
    Cao X, Dukor RK, Nafie LA (2007) Theor Chem Acc doi: 10.1007/s00214-007-0284-8
  79. 79.
    Stephens PJ, Devlin FJ, Schürch S, Hulliger J (2007) Theor Chem Acc doi: 10.1007/s00214-006-0245-7
  80. 80.
    Fristrup P, Lassen PR, Tanner D, Jalkanen KJ (2007) Theor Chem Acc doi: 10.1007/s00214-006-0186-1
  81. 81.
    Kim J, Kapitan J, Lakhani A, Bour P, Keiderling TA (2007) Theor Chem Acc doi: 10.1007/s00214-006-0183-4
  82. 82.
    Hug W, Fedorovsky M (2006) Theor Chem Acc doi: 10.1007/s00214-006-0185-2
  83. 83.
    Nafie LA (2007) Theor Chem Acc doi: 10.1007/s00214-007-0267-9

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • K. J. Jalkanen
    • 1
  • Julian D. Gale
    • 1
  • P. R. Lassen
    • 2
    • 8
  • L. Hemmingsen
    • 3
  • A. Rodarte
    • 4
  • I. M. Degtyarenko
    • 5
  • R. M. Nieminen
    • 5
  • S. Brøgger Christensen
    • 6
  • M. Knapp-Mohammady
    • 7
  • S. Suhai
    • 7
  1. 1.Nanochemistry Research Institute, Department of Applied ChemistryCurtin University of TechnologyPerthWestern Australia
  2. 2.Department of PhysicsTechnical University of DenmarkKgs. LyngbyDenmark
  3. 3.University of CopenhagenFrederiksberg CDenmark
  4. 4.Hartnell College, Administrative Information Systems C113SalinasUSA
  5. 5.Laboratory of PhysicsHelsinki University of TechnologyHutFinland
  6. 6.Department of Medicinal Chemistry, Faculty of Pharmaceutical SciencesCopenhagen UniversityCopenhagen ØDenmark
  7. 7.Department of Molecular BiophysicsGerman Cancer Research Center (Deutsches Krebsforschungszentrum)HeidelbergGermany
  8. 8.Selandia-CEUSlagelseDenmark

Personalised recommendations