Theoretical Chemistry Accounts

, Volume 118, Issue 3, pp 597–606 | Cite as

Non-alkane behavior of cyclopropane and its derivatives: characterization of unconventional hydrogen bond interactions

  • Annia Galano
  • J. Raúl Alvarez-Idaboy
  • Annik Vivier-Bunge
Regular Article

Abstract

Eight cyclopropane derivatives (Δ − R) have been modeled, with R =  −H, −CH3, −NH2, −C ≡ CH, −C ≡ CCH3, −OH, −F and −C ≡ N. All geometries have been fully optimized at the MP2/ AUG-cc-pVTZ level of calculations. Natural bond orbital analyses reveal extra p character (spλ, λ > 3) in the C-C bonds of the cyclopropyl rings. The banana-like σ CC bonds in the rings are described in detail. Alkene-like complexes between Δ − R molecules and hydrogen fluoride are identified. These weakly bonded complexes are formed through unconventional hydrogen bond interactions between the hydrogen atom in the HF molecule and the carbon–carbon bonds in the cyclopropane ring. A topological analysis of the electronic charge density and its Laplacian has been used to characterize the interactions. The possible relevance of such complexes in the modeling of substrate–receptor interactions in some anti-AIDS drugs is discussed.

Keywords

Cyclopropane Hybridization Natural bond orbitals Complex Bonding Alkene-like 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cromwell NH and Graff MA (1952). J Org Chem 17: 414 CrossRefGoogle Scholar
  2. 2.
    Oku K, Watanabe H, Kubota M, Fukuda S, Kurimoto M, Tsujisaka Y, Komori M, Inoue Y and Sakurai M (2003). J Am Chem Soc 125: 12739 CrossRefGoogle Scholar
  3. 3.
    Tarakeshwar P, Choi HS, Lee SJ, Lee JY, Kim KS, Ha TK, Jang JH, Lee JG and Lee H (1999). J Chem Phys 111: 5838 CrossRefGoogle Scholar
  4. 4.
    Tarakeshwar P, Kim KS and Brutschy B (2000). J Chem Phys 112: 1769 CrossRefGoogle Scholar
  5. 5.
    DuPré DB and Yappert MC (2002). J Phys Chem A 106: 567 CrossRefGoogle Scholar
  6. 6.
    Ferguson LN (1973). Highlights of alicyclic chemistry. Franklin, Palisades Google Scholar
  7. 7.
    Roberts JD and Caserio MC (1977). Basic principles of organic chemistry. Benjamin, Menlo Park Google Scholar
  8. 8.
    Morrison RT and Boyd RN (1983). Organic chemistry. Allyn and Bacon, Boston Google Scholar
  9. 9.
    Walsh AD (1949). Trans Faraday Soc 45: 179 CrossRefGoogle Scholar
  10. 10.
    Hoffmann R (1964). J Chem Phys 40: 2480 CrossRefGoogle Scholar
  11. 11.
    Coulson CA and Moffitt WE (1949). Philos Mag 40: 1 Google Scholar
  12. 12.
    Coulson CA and Googwin TH (1963). J Chem Soc 2851: 3161 Google Scholar
  13. 13.
    Walsh AD (1949). Trans Faraday Soc 45: 179 CrossRefGoogle Scholar
  14. 14.
    Fritchie CJ Jr (1966). Acta Crystallogr 20: 27 CrossRefGoogle Scholar
  15. 15.
    Hartman A and Hirshfeld FL (1966). Acta Crystallogr. 20: 80 CrossRefGoogle Scholar
  16. 16.
    Stevens RM, Switkes E, Laws EA and Lipscomb WN (1971). J Am Chem Soc 93: 2603 CrossRefGoogle Scholar
  17. 17.
    Ito T and Sakurai T (1973). Acta Crystallogr Sect B 29: 1594 CrossRefGoogle Scholar
  18. 18.
    Bader RWF and Nguyen-Dang TT (1981). Adv Quantum Chem 14: 63 CrossRefGoogle Scholar
  19. 19.
    Bader RWF, Tang TH, Tal Y and Biegler-Konig FW (1982). J Am Chem Soc 104: 940 CrossRefGoogle Scholar
  20. 20.
    Politzer P (1983). Chem Phys Lett 102: 74 CrossRefGoogle Scholar
  21. 21.
    Rozas I, Alkorta I and Elguero J (1997). J Phys Chem A 101: 9457 CrossRefGoogle Scholar
  22. 22.
    Foster JP and Weinhold F (1980). J Amer Chem Soc 102: 7211 CrossRefGoogle Scholar
  23. 23.
    Reed AE and Weinhold F (1983). J Chem Phys 78: 4066 CrossRefGoogle Scholar
  24. 24.
    Reed AE and Weinhold F (1983). J Chem Phys 78: 1736 CrossRefGoogle Scholar
  25. 25.
    Reed AE, Weinstock RB and Weinhold F (1985). J Chem Phys 83: 735 CrossRefGoogle Scholar
  26. 26.
    Reed AE, Curtiss LA and Weinhold F (1988). Chem Rev 88: 899 CrossRefGoogle Scholar
  27. 27.
    Pauling L (1931). J Am Chem Soc 53: 1367 CrossRefGoogle Scholar
  28. 28.
    Slater J (1931). C Phys Rev 37: 481 CrossRefGoogle Scholar
  29. 29.
    Gaussian 98, Revision A3, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr, JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian Inc , Pittsburgh PAGoogle Scholar
  30. 30.
    Dunning TH Jr (1989). J Chem Phys 90: 1007 CrossRefGoogle Scholar
  31. 31.
    Kendall RA Jr, Dunning TH Jr and Harrison RJ (1992). J Chem Phys 96: 6796 CrossRefGoogle Scholar
  32. 32.
    Moller C and Plesset MS (1934). Phys Rev 46: 618 CrossRefGoogle Scholar
  33. 33.
    Head-Gordon M, Pople JA and Frisch MJ (1988). Chem Phys Lett 153: 503 CrossRefGoogle Scholar
  34. 34.
    Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1Google Scholar
  35. 35.
    Bader RFW (1990). Atoms in molecules—a quantum theory. Oxford University Press, Oxford Google Scholar
  36. 36.
    Biegler-Köning F, Schönbohm J and Bayles D (2001). J Comput Chem 22: 545 CrossRefGoogle Scholar
  37. 37.
    Biegler-Köning (2000) AIM2000, version 1 0, University of Applied Sciences, Bielefeld, GermanyGoogle Scholar
  38. 38.
    Tarakeshwar P, Choi HS, Lee SJ, Lee JY, Kim KS, Ha TK, Jang JH, Lee JG and Lee H (1999). J Chem Phys 111: 5838 CrossRefGoogle Scholar
  39. 39.
    Díaz-Acosta I, Alvarez-Idaboy JR and Vivier-Bunge A (1999). Int J Chem Kinet 31: 29 CrossRefGoogle Scholar
  40. 40.
    Alvarez-Idaboy J, Mora-Diez N and Vivier-Bunge A (2000). J Am Chem Soc 122: 3715 CrossRefGoogle Scholar
  41. 41.
    Curtiss LA, Frurip DJ and Blander M (1979). J Chem Phys 71: 2703 CrossRefGoogle Scholar
  42. 42.
    Reimers; Watts R and Klein M (1982). Chem Phys 64: 95 CrossRefGoogle Scholar
  43. 43.
    Benson SW (1982). The foundations of chemical kinetics. Krieger, Florida Google Scholar
  44. 44.
    Okuno Y (1997). Chem-Eur J 3: 212 CrossRefGoogle Scholar
  45. 45.
    Alvarez-Idaboy JR, Reyes L and Cruz J (2006). Org Lett 8: 1763 CrossRefGoogle Scholar
  46. 46.
    Bader RFW and Essen H (1984). J Chem Phys 80: 1943 CrossRefGoogle Scholar
  47. 47.
    Kuno M, Hannongbua S and Morokuma K (2003). Chem Phys Lett 380: 456 CrossRefGoogle Scholar
  48. 48.
    Udier-Blagovic M, Tirado-Rives J and Jorgensen WL (2004). J Med Chem 47: 2389 CrossRefGoogle Scholar
  49. 49.
    Nunrium P, Kuno M, Saen-oon S and Hannongbua S (2005). Chem Phys Lett 405: 198 CrossRefGoogle Scholar
  50. 50.
    Cocuzza AJ, Chidester DR, Cordova BC, Jeffrey S, Parsons RL, Bacheler LT, Erickson-Viitanen S, Trainor GL and Ko SS (2001). Bioorg Med Chem Lett 11: 1177 CrossRefGoogle Scholar
  51. 51.
    Högberg M, Sahlberg C, Engelhardt P, Noréen R, Kangasmetsä J, Johansson NG, Öberg B, Vrang L, Zhang H, Sahlberg Bl, Unge T, Lövgren S, Fridborg K and Bäckbro K (1999). J Med Chem 42: 4150 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Annia Galano
    • 1
  • J. Raúl Alvarez-Idaboy
    • 2
  • Annik Vivier-Bunge
    • 3
  1. 1.Instituto Mexicano del PetróleoMéxico D. F.México
  2. 2.Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.México
  3. 3.Área de Química Cuántica, Departamento de QuímicaUniversidad Autónoma MetropolitanaMéxico D.F.México

Personalised recommendations