Advertisement

Theoretical Chemistry Accounts

, Volume 120, Issue 1–3, pp 191–198 | Cite as

An ab initio molecular dynamics study on the dissociative recombination reaction of HD2O+ + e

  • Megumi Kayanuma
  • Tetsuya TaketsuguEmail author
  • Keisaku Ishii
Regular Article

Abstract

An ab initio molecular dynamics simulations have been carried out for the dissociative recombination reaction of the deuterium-substituted hydronium cation, HD2O+  +  e , at the state-averaged multiconfigurational self-consistent field level. In the present simulations, five electronic states of HD2O were included explicitly, and nonadiabatic transitions among adiabatic electronic states were taken into account by the Tully’s fewest switches algorithm. It is shown that the dominant products, OD  +  D  +  H, were generated in 63% of trajectories, while the products, OH +  2D, were generated in only 11% of trajectories, indicating that the release of a light fragment H is favored over the release of a heavy fragment D. This result is in conformity with the observation that there is a larger amount of deuterium substituted species than the non-substituted species in the interstellar space.

Keywords

Surface hopping Molecular dynamics Interstellar molecule Dissociative recombination Nonadiabatic coupling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M and Montgomery JA (1993). J Comput Chem 14: 1347–1363 CrossRefGoogle Scholar
  2. 2.
    Taketsugu T and Gordon MS (1995). J Phys Chem 99: 8462–8471 CrossRefGoogle Scholar
  3. 3.
    Taketsugu T and Gordon MS (1995). J Phys Chem 99: 14597–14604 CrossRefGoogle Scholar
  4. 4.
    Gordon MS, Chaban G and Taketsugu T (1996). J Phys Chem 100: 11512–11525 CrossRefGoogle Scholar
  5. 5.
    Taketsugu T, Yanai T, Hirao K and Gordon MS (1998). J Mol Struc (THEOCHEM) 451: 163–177 CrossRefGoogle Scholar
  6. 6.
    Taketsugu T and Gordon MS (1995). J Chem Phys 103: 10042–10049 CrossRefGoogle Scholar
  7. 7.
    Taketsugu T and Gordon MS (1995). J Chem Phys 104: 2834–2840 CrossRefGoogle Scholar
  8. 8.
    Tully JC (1990). J Chem Phys 93: 1061–1071 CrossRefGoogle Scholar
  9. 9.
    Taketsugu T, Tajima A, Ishii K and Hirano T (2004). Astrophys J 608: 323–329 CrossRefGoogle Scholar
  10. 10.
    Kayanuma M, Taketsugu T and Ishii K (2005). Chem Phys Lett 418: 511–518 CrossRefGoogle Scholar
  11. 11.
    Smith D (1992). Chem Rev 92: 1473–1485 CrossRefGoogle Scholar
  12. 12.
    Sternberg A and Dalgarno A (1995). Astrophys J Suppl 99: 565–607 CrossRefGoogle Scholar
  13. 13.
    Herbst E and Lee H-H (1997). Astrophys J 485: 689–696 CrossRefGoogle Scholar
  14. 14.
    Van Dishoeck EF (1990) In: Hartquist TW (ed) Molecular astrophysics. Cambridge University Press, Cambridge, UK, pp 55Google Scholar
  15. 15.
    Miller TJ (1990) In: Hartquist TW (ed) Molecular astrophysics. Cambridge University Press, Cambridge, UK, pp 115Google Scholar
  16. 16.
    Bates DR (1990) In: Hartquist TW (ed) Molecular astrophysics. Cambridge University Press, Cambridge, UK, pp 211Google Scholar
  17. 17.
    Neufeld DA, Lepp S and Melnick GJ (1995). Astrophys J Suppl 100: 132–147 CrossRefGoogle Scholar
  18. 18.
    Vejby-Christensen L, Andersen LH, Heber O, Kella D, Pedersen HB, Schmit HT and Zajfman D (1997). Astrophys J 483: 531–540 CrossRefGoogle Scholar
  19. 19.
    Jensen MJ, Bilodeau RC, Safvan CP, Seiersen K, Andersen LH, Pedersen HB and Heber O (2000). Astrophys J 543: 764–774 CrossRefGoogle Scholar
  20. 20.
    Turner BE and Zuckerman B (1978). Astrophys J 225: L75–L79 CrossRefGoogle Scholar
  21. 21.
    Dalgarno A and Lepp D (1984). Astrophys J 287: L47–L50 CrossRefGoogle Scholar
  22. 22.
    Celani P and Werner H-J (2000). J Chem Phys 112: 5546–5557 CrossRefGoogle Scholar
  23. 23.
    Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schutz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J (2002) MOLPRO, a package of ab initio programs designed by Werner H-J, Knowles PJ, version 2002.1Google Scholar
  24. 24.
    Dunning TH Jr, Hay PJ (1977) In: Schaefer HF III (ed) Methods of electronic structure theory, vol 2. Plenum Press, New YorkGoogle Scholar
  25. 25.
    Gellene GI and Porter RF (1984). J Chem Phys 81: 5570–5576 CrossRefGoogle Scholar
  26. 26.
    Peslherbe GH, Wang H, Hase WL (1999) In: Ferguson DM, Siepman JI, Truhlar DG (eds) Advances in Chemical Physics, vol. 105. Wiley, New York, pp 171–201Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Megumi Kayanuma
    • 1
  • Tetsuya Taketsugu
    • 2
    Email author
  • Keisaku Ishii
    • 3
  1. 1.Department of ChemistryOchanomizu UniversityTokyoJapan
  2. 2.Division of Chemistry, Graduate School of ScienceHokkaido UniversitySapporoJapan
  3. 3.Department of Chemical System Engineering, Graduate School of EngineeringUniversity of TokyoTokyoJapan

Personalised recommendations