Abstract
We present two new hybrid meta exchange- correlation functionals, called M06 and M06-2X. The M06 functional is parametrized including both transition metals and nonmetals, whereas the M06-2X functional is a high-nonlocality functional with double the amount of nonlocal exchange (2X), and it is parametrized only for nonmetals.The functionals, along with the previously published M06-L local functional and the M06-HF full-Hartree–Fock functionals, constitute the M06 suite of complementary functionals. We assess these four functionals by comparing their performance to that of 12 other functionals and Hartree–Fock theory for 403 energetic data in 29 diverse databases, including ten databases for thermochemistry, four databases for kinetics, eight databases for noncovalent interactions, three databases for transition metal bonding, one database for metal atom excitation energies, and three databases for molecular excitation energies. We also illustrate the performance of these 17 methods for three databases containing 40 bond lengths and for databases containing 38 vibrational frequencies and 15 vibrational zero point energies. We recommend the M06-2X functional for applications involving main-group thermochemistry, kinetics, noncovalent interactions, and electronic excitation energies to valence and Rydberg states. We recommend the M06 functional for application in organometallic and inorganometallic chemistry and for noncovalent interactions.
References
- 1.
Boese AD and Handy NC (2002). J Chem Phys 116: 9559
- 2.
Tao J, Perdew JP, Staroverov VN and Scuseria GE (2003). Phys Rev Lett 91: 146401
- 3.
Staroverov VN, Scuseria GE, Tao J and Perdew JP (2003). J Chem Phys 119: 12129
- 4.
Zhao Y, Lynch BJ and Truhlar DG (2004). J Phys Chem A 108: 2715
- 5.
Boese AD and Martin JML (2004). J Chem Phys 121: 3405
- 6.
Zhao Y and Truhlar DG (2004). J Phys Chem A 108: 6908
- 7.
Xu X and Goddard WA (2004). Proc Natl Acad Sci USA 101: 2673
- 8.
Zhao Y, Lynch BJ and Truhlar DG (2005). Phys Chem Chem Phys 7: 43
- 9.
Perdew JP, Ruzsinszky A, Tao J, Staroverov VN, Scuseria GE and Csonka GI (2005). J Chem Phys 123: 62201
- 10.
Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 5656
- 11.
Keal TW and Tozer DJ (2005). J Chem Phys 123: 121103
- 12.
Zhao Y, Schultz NE and Truhlar DG (2005). J Chem Phys 123: 161103
- 13.
Becke AD (2005). J Chem Phys 122: 64101
- 14.
Zhao Y, Schultz NE and Truhlar DG (2006). J Chem Theory Comput 2: 364
- 15.
Mori-Sanchez P, Cohen AJ and Yang W (2006). J Chem Phys 124: 91102
- 16.
Zhao Y and Truhlar DG (2006). J Chem Phys 125: 194101
- 17.
Grimme S (2006). J Chem Phys 124: 034108
- 18.
Grimme S (2006). J Comp Chem 27: 1787
- 19.
Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 13126
- 20.
Scuseria GE, Staroverov VN (2005). In: Dykstra CE, Frenking G, Kim KS, Scuseria GE (eds) Theory and application of computational chemistry: the first 40 years. Elsevier, Amsterdam, pp 669–724
- 21.
Voorhis TV and Scuseria GE (1998). J Chem Phys 109: 400
- 22.
Becke AD (1998). J Chem Phys 109: 2092
- 23.
Baerends EJ, Ellis DE and Ros P (1973). Chem Phys 2: 41
- 24.
Dunlap BI, Connolly JWD and Sabin JR (1979). J Chem Phys 71: 3396
- 25.
Vahtras O, Almlöf J and Feyereisen MW (1993). Chem Phys Lett 213: 514
- 26.
Kendall RA, Apra E, Bernholdt DE, Bylaska EJ, Dupuis M, Fann GI, Harrison RJ, Ju J, Nichols JA, Nieplocha J, Straatsma TP, Windus TL and Wong AT (2000). Comput Phys Commun 128: 260
- 27.
Te Velde G, Bickelhaupt FM, Baerends EJ, Fonseca Guerra C, Van Gisbergen SJA, Snijders JG and Ziegler T (2001). J Comp Chem 22: 931
- 28.
VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T and Hutter J (2005). Comput Phys Commun 167: 103
- 29.
Jung Y, Sodt A, Gill PMW and Head-Gordon M (2005). Proc Natl Acad Sci USA 102: 6692
- 30.
Eichkorn K, Treutler O, Oehm H, Haeser M and Ahlrichs R (1995). Chem Phys Lett 240: 283
- 31.
Eichkorn K, Weigend F, Treutler O and Ahlrichs R (1997). Theo Chem Acc 97: 119
- 32.
Füsti-Molnár L and Pulay P (2003). Theochem 25: 666–667
- 33.
Skylaris C-K, Haynes PD, Mostofi AA and Payne MC (2006). Phys Status Solidi B, Basic Res 243: 973
- 34.
Dreuw A and Head-Gordon M (2006). Chem Rev 105: 4009
- 35.
Zhao Y and Truhlar DG (2006). Org Lett 8: 5753
- 36.
Lynch BJ, Fast PL, Harris M and Truhlar DG (2000). J Phys Chem A 104: 4811
- 37.
Zhao Y and Truhlar DG (2005). J Chem Theory Comput 1: 415
- 38.
Schultz N, Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 4388
- 39.
Schultz N, Zhao Y and Truhlar DG (2005). J Phys Chem A 109: 11127
- 40.
Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 10478
- 41.
Zhao Y and Truhlar DG (2006). J Chem Theory Comput 2: 1009
- 42.
Zhao Y and Truhlar DG (2006). J Phys Chem A 110: 5121
- 43.
Zhao Y and Truhlar DG (2006). J Chem Phys 124: 224105
- 44.
Zhao Y and Truhlar DG (2007). J Chem Theory Comput 3: 289
- 45.
Zhang Y, Li ZH and Truhlar DG (2007). J Chem Theory Comput 3: 593
- 46.
Kabelác M, Sherer EC, Cramer CJ and Hobza P (2006). Chem Eur J 13: 2067
- 47.
Schultz NE, Gherman BF, Cramer CJ and Truhlar DG (2006). J Phys Chem B 110: 24030
- 48.
Zhao Y and Truhlar DG (2007). J Org Chem 72: 295
- 49.
Zhao Y, Lynch BJ and Truhlar DG (2004). J Phys Chem A 108: 4786
- 50.
Zhao Y, González-García N and Truhlar DG (2005). J Phys Chem A 109: 2012
- 51.
Chakravorty SJ, Gwaltney SR, Davidson ER, Parpia FA and Fischer CFF (1993). Phys Rev A 47: 3649
- 52.
Lynch BJ, Zhao Y and Truhlar DG (2003). J Phys Chem A 107: 1384
- 53.
Zheng JJ, Zhao Y and Truhlar DG (2007). J Chem Theory Comput 3: 569
- 54.
Pople JA, Head-Gordon M and Raghavachari K (1987). J Chem Phys 87: 5968
- 55.
Fast PL, Sanchez ML and Truhlar DG (1999). Chem Phys Lett 306: 407
- 56.
Curtiss LA, Redfern PC, Raghavachari K, Rassolov V and Pople JA (1999). J Chem Phys 110: 4703
- 57.
Curtiss LA, Raghavachari K, Redfern PC, Rassolov V and Pople JA (1998). J Chem Phys 109: 7764
- 58.
Frisch MJ, Pople JA and Binkley JS (1984). J Chem Phys 80: 3265
- 59.
Hehre WJ, Radom L, Schleyer PvR and Pople JA (1986). Ab initio molecular orbital theory, 1st ed. , Wiley, New York
- 60.
Izgorodina EI, Coote ML and Radom L (2005). J Phys Chem A 109: 7558
- 61.
Weigend F, Furche F and Ahlrichs R (2003). J Chem Phys 119: 12753
- 62.
Fast PL and Truhlar DG (2000). J Phys Chem A 104: 6111
- 63.
Lynch BJ and Truhlar DG (2003). J Phys Chem A 107: 3898
- 64.
Sinnokrot MO and Sherrill CD (2004). J Phys Chem A 108: 10200
- 65.
Jurecka P, Sponer J, Cerny J and Hobza P (2006). Phys Chem Chem Phys 8: 1985
- 66.
Runge E and Gross EKU (1984). Phys Rev Lett 52: 997
- 67.
Casida ME (1996) . In: Seminario JM(ed) Recent developments and applications of modern density functional theory. Elsevier, Amsterdam, p 391
- 68.
Bauernschmitt R and Ahlrichs R (1996). Chem Phys Lett 256: 454
- 69.
Stratmann RE, Scuseria GE and Frisch MJ (1998). J Chem Phys 109: 8218
- 70.
Marques MAL and Gross EKU (2004). Annu Rev Phys Chem 55: 427
- 71.
Furche F and Rappoport D (2005). Comp Theor Chem 16: 93
- 72.
Sadlej AJ (1991). Theor Chim Acta 79: 123
- 73.
Casida ME, Jamorski C, Casida KC and Salahub DR (1998). J Chem Phys 108: 4439
- 74.
Hamprecht FA, Cohen AJ, Tozer DJ and Handy NC (1998). J Chem Phys 109: 6264
- 75.
NIST Computational Chemistry Comparison and Benchmark DataBase, http://srdata.nist.gov/cccbdb/
- 76.
Furche F and Perdew JP (2006). J Chem Phys 124: 044103
- 77.
Woon DE and T.H. Dunning J (1993). J Chem Phys 98: 1358
- 78.
Balabanov NB and Peterson KA (2005). J Chem Phys 123: 064107
- 79.
Quintal MM, Karton A, Iron MA, Boese AD and Martin JML (2006). J Phys Chem A 110: 709
- 80.
Truhlar DG, Lynch BJ, Zhao Y, http://comp.chem.umn.edu/ basissets/basis.cgi
- 81.
Raghavachari K and Trucks GW (1989). J Chem Phys 91: 1062
- 82.
Martin RL and Hay PJ (1981). J Chem Phys 75: 4539
- 83.
Boys SF and Bernardi F (1970). Mol Phys 19: 553
- 84.
Schwenke DW and Truhlar DG (1985). J Chem Phys 82: 2418
- 85.
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski G, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA. (2003) . Gaussian Inc., Pittsburgh
- 86.
Voorhis TV and Scuseria GE (1997). Mol Phys 92: 601
- 87.
Perdew JP, Burke K and Ernzerhof M (1996). Phys Rev Lett 77: 3865
- 88.
Becke AD (1986). J Chem Phys 84: 4524
- 89.
Kohn W and Sham LJ (1965). Phys Rev 140: 1133
- 90.
Stoll H, Pavkidou CME and Preuss H (1978). Theor Chim Acta 49: 143
- 91.
Becke AD (1988). Phys Rev A 38: 3098
- 92.
Lee C, Yang W and Parr RG (1988). Phys Rev B 37: 785
- 93.
Becke AD (1993). J Chem Phys 98: 5648
- 94.
Stephens PJ, Devlin FJ, Chabalowski CF and Frisch MJ (1994). J Phys Chem 98: 11623
- 95.
Schmider HL and Becke AD (1998). J Chem Phys 108: 9624
- 96.
Adamo C and Barone V (1999). J Chem Phys 110: 6158
- 97.
Valentin CD, Pacchioni G, Bredow T, Dominguez-Ariza D and Illas F (2002). J Chem Phys 117: 2299
- 98.
Wilson PJ, Bradley TJ and Tozer DJ (2001). J Chem Phys 115: 9233
- 99.
Curtiss LA, Redfern PC and Raghavachari K (2005). J Chem Phys 123: 124107
- 100.
Perdew JP, Schmidt K (2001) In: Van-Doren V, Alsenoy CV, Geerlings P (eds) Density functional theory and its applications to materials. American Institute of Physics, New York, p 1
- 101.
Zhao Y, Pu J, Lynch BJ and Truhlar DG (2004). Phys Chem Chem Phys 6: 673
- 102.
Woodcock HL, Schaefer HF and Schreiner PR (2002). J Phys Chem A 106: 11923
- 103.
Champagne B, Perpete EA, van Gisbergen SJA, Baerends E-J, Snijders JG, Soubra-Ghaoui C, Robins KA and Kirtman B (1998). J Chem Phys 109: 10489
- 104.
Champagne B, Perpete EA, Jacquemin D, Gisbergen SJAV, Baerends E-J, Soubra-Ghaoui C, Robins KA and Kirtman B (2000). J Phys Chem A 104: 4755
- 105.
Schreiner PR, Fokin AA, Pascal RA Jr and de Meijere A (2006). Org Lett 8: 3635
- 106.
Grimme S (2006). Angew Chem Int Ed 45: 4460
- 107.
Phillips JA and Cramer CJ (2005). J Chem Theory Comput 1: 827
- 108.
Füsti-Molnár L and Szalay PG (1996). J Phys Chem 100: 6288
- 109.
Leininger ML and Schaefer HF (1997). J Chem Phys 107: 9059
- 110.
Ljubic I and Sabljic A (2002). J Phys Chem A 106: 4745
- 111.
Feller D and Peterson KA (1999). J Chem Phys 110: 8384
- 112.
Curtiss LA, Raghavachari K, Redfern PC and Pople JA (2000). J Chem Phys 112: 7374
- 113.
Grimme S (2005). J Phys Chem A 109: 3067
- 114.
Cioslowski J, Schimeczek M, Liu G and Stoyanov V (2000). J Chem Phys 113: 9377
- 115.
Ruiz E, Salahub DR and Vela A (1995). J Am Chem Soc 117: 1141
- 116.
Ruiz E, Salahub DR and Vela A (1996). J Phys Chem 100: 12265
- 117.
Kool ET, Morales JC and Guckian KM (2000). Angew Chem Int Ed 39: 990
- 118.
Barthelemy P, Lee SJ and Grinstaff M (2005). Pure Appl Chem 77: 2133
- 119.
Vondrásek J, Bendová L, Klusák V and Hobza P (2005). J Am Chem Soc 127: 2615
- 120.
Mansikkamaeki H, Nissinen M and Rissanen K (2004). Angew Chem Int Ed 43: 1243
- 121.
Vázquez M, Bermejo MR, Licchelli M, González-Noya AM, Pedrido RM, Sangregorio C, Sorace L, García-Deibe AM and Sanmartín J (2005). Eur J Inorg Chem 17: 3479
- 122.
Hobza P and Sponer J (1999). Chem Rev 99: 3247
- 123.
Sponer J, Leszczynski J and Hobza P (2001). Biopolymers 61: 3
- 124.
Birks JB (1970). Photophysics of aromatic molecules. Wiley, New York, p 71
- 125.
Tawada Y, Tsuneda T, Yanagisawa S, Yanai T and Hirao K (2004). J Chem Phys 120: 8425
- 126.
Ben-Shlomo SB and Kaldor U (1990). J Chem Phys 92: 3680
- 127.
Nielsen ES, Jorgensen P and Oddershede J (1980). J Chem Phys 73: 6238
- 128.
Clouthier DJ and Ramsay DA (1983). Annu Rev Phys Chem 34: 31
- 129.
Biermann D and Schmidt W (1980). J Am Chem Soc 102: 3163
- 130.
Grimme S and Parac M (2003). Chem Phys Chem 4: 292
- 131.
Hautman J and Klein ML (1991). NATO ASI Ser E 205: 395
- 132.
Karlin KD (1993). Science 261: 701
- 133.
Crabtree RH (1994). The organometallic chemistry of the transition metals, 2nd ed. Wiley, New York
- 134.
George SM (1995). Chem Rev 95: 475
- 135.
Somorjai GA (1995). Chem Rev 96: 1223
- 136.
Ratner MA, Davis B, Kemp M, Mujica V, Roitberg A and Yalirakil S (1998). Ann N Y Acad Sci 852: 22
- 137.
Truhlar DG, Morokuma K (1999) In: ACS symposium series 721:transition state modeling for catalysis. American Chemical Society, Washington, DC
- 138.
Davidson ER (2000). Chem Rev 100: 351
- 139.
Siegbahn PEM and Blomberg MRA (2000). Chem Rev 100: 421
- 140.
Gladysz JA (2000). Chem Rev 100: 1167
- 141.
Rappe AK, Skiff WM and Casewit CJ (2000). Chem Rev 100: 1435
- 142.
Lovelll T, Stranger R and McGrady JE (2001). Inorg chem, 40: 39
- 143.
Bertini I, Sigel A and Sigel H (2001). Handbook on Metalloproteins. Marcel Dekker, New York
- 144.
Coperat C, Chabonas M, Saint-Arromon RP and Basset J-M (2003). Angew Chem Int Ed 42: 156
- 145.
Cavigliasso G and Stranger R (2005). Inorg Chem 44: 5081
- 146.
Carreón-Macedo J-L and Harvey JN (2006). Phys Chem Chem Phys 8: 93
- 147.
Tuma C and Sauer J (2006). Phys Chem Chem Phys 8: 3955
- 148.
Pople JA, Scott AP and Wong MW (1993). Israel J Chem 33: 345
- 149.
Scott AP and Radom L (1996). J Phys Chem 100: 16502
- 150.
Fast PL, Corchado J, Sanchez ML and Truhlar DG (1999). J Phys Chem A 103: 3139
- 151.
Herzberg G (1966). Molecular spectra and molecular structure. III.Electronic spectra and electronic structure of polyatomic molecules. Van Nostrand Reinhold, New York
- 152.
NIST Chemistry Webbook, http://webbook.nist.gov/chemistry
Author information
Affiliations
Corresponding author
Additional information
Contribution to the Mark S. Gordon 65th Birthday Festschrift Issue.
An erratum to this article is available at http://dx.doi.org/10.1007/s00214-007-0401-8.
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Zhao, Y., Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Account 120, 215–241 (2008). https://doi.org/10.1007/s00214-007-0310-x
Received:
Accepted:
Published:
Issue Date:
Keywords
- Density functional theory
- Exchange
- Correlation
- Metals
- Organic molecules