Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 57–65 | Cite as

Extended charge decomposition analysis and its application for the investigation of electronic relaxation

Regular Article

Abstract

A general and comprehensive molecular orbital method for the investigation of the electronic relaxation contribution to redox processes is presented. This method is based on the population analysis of the molecular orbitals of the final electronic state in terms of the occupied and unoccupied molecular orbitals of the Koopmans’ state. The DFT calculations for oxidation and reduction of transition-metal species indicate a dramatic magnitude of electronic relaxation in these systems. The passive molecular orbitals play a more significant role in electronic relaxation than the redox-active molecular orbital that directly participates in the redox process. The mechanism of electronic relaxation in the oxidation of FeII and CuI species varies from the ligand to metal 3d charge transfer (LMCT) interactions to the ligand to metal 4s,4p LMCT. For systems with significant electronic delocalization, electronic relaxation becomes smaller leading to much smaller contributions to the redox processes.

Keywords

Charge decomposition analysis Electronic relaxation Orbital relaxation Electronic polarization Ionization Oxidation Reduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gorelsky SI, Basumallick L, Vura-Weis J, Sarangi R, Hedman B, Hodgson KO, Fujisawa K, Solomon EI (2005) Inorg Chem 44:4947CrossRefGoogle Scholar
  2. 2.
    Gorelsky SI, Ghosh S, Solomon EI (2006) J Am Chem Soc 128:278CrossRefGoogle Scholar
  3. 3.
    Solomon EI, Gorelsky SI, Dey A (2006) J Comput Chem 27:1415CrossRefGoogle Scholar
  4. 4.
    Dapprich S, Frenking G (1995) J Phys Chem 99:9352CrossRefGoogle Scholar
  5. 5.
    Rusanova J, Rusanov E, Gorelsky SI, Christendat D, Popescu R, Farah AA, Beaulac R, Reber C, Lever ABP (2006) Inorg Chem 45:6246CrossRefGoogle Scholar
  6. 6.
    Morokuma K (1971) J Chem Phys 55:1236CrossRefGoogle Scholar
  7. 7.
    Umeyama H, Morokuma K (1977) J Am Chem Soc 99:1316CrossRefGoogle Scholar
  8. 8.
    Kennepohl P, Solomon EI (2003) Inorg Chem 42:679CrossRefGoogle Scholar
  9. 9.
    Kennepohl P, Solomon EI (2003) Inorg Chem 42:689CrossRefGoogle Scholar
  10. 10.
    Kennepohl P, Solomon EI (2003) Inorg Chem 42:696CrossRefGoogle Scholar
  11. 11.
    Kennepohl P, Solomon EI (2004) In: McCleverty JA, Meyer TJ (eds) Comprehensive Coordination Chemistry II vol 2, pp 691. Elsevier, AmsterdamGoogle Scholar
  12. 12.
    Mulliken RS (1955) J Chem Phys 23:1833CrossRefGoogle Scholar
  13. 13.
    Gaussian 03, Revision C.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr, JA, Vreven T, Kudin KN, Burant JC, Millam JM, Lyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., www.gaussian.comGoogle Scholar
  14. 14.
    AOMix (1997) Program for Molecular Orbital Analysis, version 6.32, Gorelsky SI, York University, Toronto, Canada. http://www. sg-chem.netGoogle Scholar
  15. 15.
    Gorelsky SI, Lever ABP (2001) J Organomet Chem 635:187CrossRefGoogle Scholar
  16. 16.
    ADF, SCM (2006) Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. http://www.scm.comGoogle Scholar
  17. 17.
    HyperChem, Hypercube Inc., Gainesville, FL, USA. http://www. hyper.comGoogle Scholar
  18. 18.
    Jaguar, Schrodinger Inc., Portland, OR, USA. http://www. schrodinger.comGoogle Scholar
  19. 19.
    MOPAC, Stewart JJP Stewart Computational Chemistry, Colorado Springs, CO, USA. www.openmopac.netGoogle Scholar
  20. 20.
    Q-Chem, Q-Chem Inc., Pittsburgh, PA, USA. http://www. q-chem.comGoogle Scholar
  21. 21.
    Spartan, Wavefunction Inc., Irvine, CA, USA. http://www. wavefunction.comGoogle Scholar
  22. 22.
    Ahlrichs R, Bär M, Häser M, Horn HKC (1989) Chem Phys Lett 162:165CrossRefGoogle Scholar
  23. 23.
    ZINDO, Zerner MC University of Florida, Gainesville, FL, USAGoogle Scholar
  24. 24.
    Mayer I (1986) Int J Quantum Chem 29:73CrossRefGoogle Scholar
  25. 25.
    Mayer I (1986) Int J Quantum Chem 29:477CrossRefGoogle Scholar
  26. 26.
    Solomon EI (2006) Inorg Chem 45:8012CrossRefGoogle Scholar
  27. 27.
    Hansen DF, Gorelsky SI, Sarangi R, Hodgson KO, Hedman B, Christensen HEM, Solomon EI, Led JJ (2006) J Biol Inorg Chem 11:277CrossRefGoogle Scholar
  28. 28.
    Gorelsky SI, Xie X, Chen Y, Fee JA, Solomon EI (2006) J Am Chem Soc 128:16452CrossRefGoogle Scholar
  29. 29.
    Becke AD (1993) J Chem Phys 98:5648CrossRefGoogle Scholar
  30. 30.
    Becke AD (1988) Phys Rev A 38:3098CrossRefGoogle Scholar
  31. 31.
    Perdew JP (1986) Phys Rev B 33:8822CrossRefGoogle Scholar
  32. 32.
    Szilagyi RK, Metz M, Solomon EI (2002) J Phys Chem A 106:2994CrossRefGoogle Scholar
  33. 33.
    Iwata S, Ostermeier C, Ludig B, Michel H (1995) Nature 376:660CrossRefGoogle Scholar
  34. 34.
    Brown K, Djinovic-Carugo K, Haltia T, Cabrito I, Saraste M, Moura JJG, Moura I, Tegoni M, Cambillau C (2000) J Biol Chem 275:41133CrossRefGoogle Scholar
  35. 35.
    Brown K, Tegoni M, Prudencio M, Pereira AS, Besson S, Moura JJG, Moura I, Cambillau C (2000) Nature Struct Biol 7:191CrossRefGoogle Scholar
  36. 36.
    Haltia T, Brown K, Tegoni M, Cambillau C, Saraste M, Mattila K, Djinovic-Carugo K (2003) Biochem J 369:77CrossRefGoogle Scholar
  37. 37.
    Schafer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829CrossRefGoogle Scholar
  38. 38.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of ChemistryStanford UniversityStanfordUSA
  2. 2.Centre for Catalysis Research and Innovation, Department of ChemistryUniversity of OttawaOttawaCanada

Personalised recommendations