Theoretical Chemistry Accounts

, Volume 118, Issue 1, pp 89–97 | Cite as

Magnetotropicity of phosphole and its arsenic analogue

  • Stefano Pelloni
  • Paolo LazzerettiEmail author
Regular Article


Spatial ring current models for the phosphole molecule and its arsenic parent have been constructed. Diatropism of these molecules is quite peculiar and fundamentally different from that of benzene as shown by stagnation graphs of current density field. Maps of shielding density are helpful for interpreting the effect of electronic currents on nuclear shielding. Constrained planarity increases the degree of diatropicity quantitatively specified by magnetic descriptors, which implies that ring currents go together with π-electron distortivity.


Chem Phys Ring Current Phosphole Current Density Vector Stagnation Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    von Ragué Schleyer R (2001). Chem Rev 101:1115 and articles therein.Google Scholar
  2. 2.
    Cyrañski M, Krygowski TM, Katrizky AR, von Ragué Schleyer P(2002). J Org Chem 67:1333CrossRefGoogle Scholar
  3. 3.
    Subramanian G, von Ragué Schleyer P, Jiao H(1996). Angew Chem Int Ed Engl 35:2638CrossRefGoogle Scholar
  4. 4.
    Lazzeretti P(2000) Ring currents. In: Progress in nuclear magnetic resonance spectroscopy, vol. 36. Emsley JW, Feeney J, Sutcliffe LH (eds) Elsevier, Amsterdam, pp. 1–88Google Scholar
  5. 5.
    Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2003). J Chem Phys 119:5518CrossRefGoogle Scholar
  6. 6.
    Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2004). J Chem Phys 120:6542CrossRefGoogle Scholar
  7. 7.
    Cuesta IG, Jartín RS, Sànchez de Merás A, Lazzeretti P (2005). Mol Phys 120:789Google Scholar
  8. 8.
    Cuesta IG, Sànchez de Merás A, Lazzeretti P (2006). J Comput Chem 27:344CrossRefGoogle Scholar
  9. 9.
    Cuesta IG, Sànchez de Merás A, Lazzeretti P (2006). J Comput Chem 27:1980CrossRefGoogle Scholar
  10. 10.
    Egan W, Tang R, Zon G, Mislow K (1971). J Am Chem Soc 93:6205CrossRefGoogle Scholar
  11. 11.
    Andose JD, Rauk A, Mislow K (1974). J Am Chem Soc 22:6904CrossRefGoogle Scholar
  12. 12.
    Nyulászi L (1995). J Phys Chem 99:586CrossRefGoogle Scholar
  13. 13.
    Dransfeld A, Nyulászi L, Schleyer PvR (1998). Inorg Chem 37:4413CrossRefGoogle Scholar
  14. 14.
    Johansson MP, Jusélius J (2005). Lett Org Chem 2:469CrossRefGoogle Scholar
  15. 15.
    Nyulászi L, Keglevich G, Quin LD (1996). J Org Chem 61:7808CrossRefGoogle Scholar
  16. 16.
    Keglevich G, Böcskei Z, Keseru GM, Ujszaszy K, Quin LD (1997). J Am Chem Soc 119:5095CrossRefGoogle Scholar
  17. 17.
    Cloke FGN, Hitchcock PB, Hunnable P, Nixon JF, Nyulászi L, Niecke E, Thelen V (1998). Angew Chem Int Ed Engl 37:1083CrossRefGoogle Scholar
  18. 18.
    Nyulászi L (2001). Chem Rev 101:1229CrossRefGoogle Scholar
  19. 19.
    Nyulászi L (2000). Tetrahedron 56:79CrossRefGoogle Scholar
  20. 20.
    Lazzeretti P (2004). Phys Chem Chem Phys 6:217CrossRefGoogle Scholar
  21. 21.
    Jug K, Hiberty PC, Shaik S (2001). Chem Rev 101:1477CrossRefGoogle Scholar
  22. 22.
    Havenith RWA, Jenneskens LW, Fowler PW, Steiner E (2003). Chem Comm 748Google Scholar
  23. 23.
    Havenith RWA, Fowler PW, Jenneskens LW, Steiner E (2003). J Phys Chem A 107:1867CrossRefGoogle Scholar
  24. 24.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone J, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA(1998). Gaussian 98, Revision A.7. Gaussian, Inc., PittsburghGoogle Scholar
  25. 25.
    Zanasi R (1996). J Chem Phys 105:1460CrossRefGoogle Scholar
  26. 26.
    Lazzeretti P, Malagoli M, Zanasi R (1991). Technical report on project “ sistemi informatici e calcolo parallelo”, Research Report 1/67, CNRGoogle Scholar
  27. 27.
    van Duijneveldt FB (1971). Gaussian basis sets for the atoms H-Ne for use in molecular calculations, Research Report RJ 945 IBMGoogle Scholar
  28. 28.
    McLean AD, Chandler GS(1980). J Chem Phys 72:5639CrossRefGoogle Scholar
  29. 29.
    Woon DE, Dunning TH, Jr (1993). J Chem Phys 98:1358CrossRefGoogle Scholar
  30. 30.
    Angeli C, Bak KL, Bakken V, Christiansen O, Cimiraglia R, Coriani S, Dahle P, Dalskov EK, Enevoldsen T, Fernández B, Hättig C, Hald K, Halkier A, Heiberg H, Helgaker T, Hettema H, Jensen HJA, Jonsson D, Jørgensen P, Kirpekar S, Klopper W, Kobayashi R, Koch H, Ligabue A, Lutnaes OB, Mikkelsen KV, Norman P, Olsen J, Packer MJ, Pedersen TB, Rinkevicius Z, Rudberg E, Ruden TA, Ruud K, Salek P, Sánchez de Merás A, Saue T, Sauer SPA, Schimmelpfennig B, Sylvester-Hvid KO, Taylor PR, Vahtras O, Wilson DJ, Ågren H, Dalton, An electronic structure program, Release 2.0, Dalton,( Scholar
  31. 31.
    Pelloni S, Ligabue A, Lazzeretti P (2004). Org Lett 6:4451CrossRefGoogle Scholar
  32. 32.
    Ferraro MB, Faglioni F, Ligabue A, Pelloni S, Lazzeretti P (2005). Magn Res Chem 43:316CrossRefGoogle Scholar
  33. 33.
    Pelloni S, Faglioni F, Zanasi R, Lazzeretti P (2006). Phys Rev A 74:012506CrossRefGoogle Scholar
  34. 34.
    The LINUX and WINDOWS versions of the graphic code used to obtain three-dimensional representations of the stagnation graph of arsole and phosphole molecules and the maps reporting streamlines and moduli of the current density are available as supporting information. This material can also be downloaded at Scholar
  35. 35.
    Keith TA, Bader RFW (1993). J Chem Phys 99:3669CrossRefGoogle Scholar
  36. 36.
    Pelloni S, Lazzeretti P Theor. Chem. Acc., (in press,). DOI:10.1007/s00214-006-0211-4Google Scholar
  37. 37.
    Ferraro MB, Lazzeretti P, Viglione RG, Zanasi R (2004). Chem Phys Lett 390:268CrossRefGoogle Scholar
  38. 38.
    Gomes JANF (1983). J Chem Phys 78:4585CrossRefGoogle Scholar
  39. 39.
    Gomes JANF (1983). Phys Rev A 28:559CrossRefGoogle Scholar
  40. 40.
    Gomes JANF (1983). J Mol Struct (THEOCHEM). 93:111CrossRefGoogle Scholar
  41. 41.
    Soncini A, Fowler PW, Lazzeretti P, Zanasi R (2005). Chem Phys Lett 401:164CrossRefGoogle Scholar
  42. 42.
    Mo Y, von Ragué Schleyer P(2006). Chemistry Eur J 12:2009CrossRefGoogle Scholar
  43. 43.
    Binsch G (1973) Naturwiss. 60:369CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Dipartimento di ChimicaUniversità degli Studi di Modena e Reggio EmiliaModenaItaly

Personalised recommendations