Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 35–38 | Cite as

Electronic structures of tetragonal nitrido and nitrosyl metal complexes

Regular Article

Abstract

The standard oxidation states of central metal atoms in C4v nitrido ([M(N)(L)5]z) complexes are four units higher than those in corresponding nitrosyls ([M(NO)(L)5]z) (L=CN: z =  3−, M =  Mn, Tc, Re; z =  2−, M =  Fe, Ru, Os; L =  NH3z = 2+, M = Mn, Tc, Re; z = 3+, M = Fe, Ru, Os). Recent work has suggested that [Mn(NO)(CN)5]3− behaves electronically much closer to Mn(V)[b2(xy)]2, the ground state of [Mn(N)(CN)5]3−, than to Mn(I)[b2(xy)]2[e(xz,yz)]4. We have employed density functional theory and time-dependent density functional theory to calculate the properties of the ground states and lowest-lying excitations of [M(N)(L)5]z and [M(NO)(L)5]z. Our results show that [M(N)(L)5]z and [M(NO)(L)5]z complexes with the same z value have strikingly similar electronic structures.

Keywords

Density functional theory Time dependent density functional theory Electronic structures Nitrido Nitric oxide 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Enemark JH, Feltham RD (1974). Coord Chem Rev 13:339CrossRefGoogle Scholar
  2. 2.
    Bendix J, Meyer K, Weyhermüller T, Bill E, Meltzer-Nolte N, Wieghardt K (1998). Inorg Chem 37:1767CrossRefGoogle Scholar
  3. 3.
    Hummel P, Gray HB (2006) Coord Chem Rev (accepted)Google Scholar
  4. 4.
    Ahlrichs R, Bär M, Baron HP, Bauernschmitt R, Böcker S, Deglmann P, Ehrig M, Eichkorn K, Elliott S, Furche F, Haase F, Häser M, Horn H, Hättig C, Huber C, Huniar U, Kattannek M, Köhn A, Kölmel C, Kollwitz M, May K, Ochsenfeld C, Öhm H, Patzelt H, Rubner O, Schäfer A, Schneider U, Sierka M, Treutler O, Unterreiner B, von Arnim M, Weigend F, Weis P, Weiss H (2004) TURBOMOLE V5-7, Quantum Chemistry Group, University of Karlsruhe, KarlsruheGoogle Scholar
  5. 5.
    Schäfer A, Huber C, Ahlrichs R (1994). J Chem Phys 100:5829CrossRefGoogle Scholar
  6. 6.
    Andrae D, Haeussermann U, Dolg M, Stoll H, Preuss H (1990). Theor Chim Acta 77:123CrossRefGoogle Scholar
  7. 7.
    Dirac PAM (1929). Proc Royal Soc (London) A 123:714CrossRefGoogle Scholar
  8. 8.
    Slater JC (1951). Phys Rev 81:385CrossRefGoogle Scholar
  9. 9.
    Vosko SH, Wilk L, Nusair M (1980). Can J Phys 58:1200CrossRefGoogle Scholar
  10. 10.
    Perdew JP, Wang Y (1992). Phys Rev B 45:13244CrossRefGoogle Scholar
  11. 11.
    Becke AD (1988). Phys Rev A 38:3098CrossRefGoogle Scholar
  12. 12.
    Lee C, Yang W, Parr RG (1988). Phys Rev B 37:785CrossRefGoogle Scholar
  13. 13.
    Perdew JP (1986). Phys Rev B 33:8822CrossRefGoogle Scholar
  14. 14.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865CrossRefGoogle Scholar
  15. 15.
    Becke AD (1993). J Chem Phys 98:5648CrossRefGoogle Scholar
  16. 16.
    Klamt A, Schürmann G (1993). J Chem Soc Perkin Trans 2:799Google Scholar
  17. 17.
    Treutler O, Ahlrichs R (1995). J Chem Phys 102:346CrossRefGoogle Scholar
  18. 18.
    von Arnim M, Ahlrichs R (1999). J Chem Phys 111:9183CrossRefGoogle Scholar
  19. 19.
    Furche F (2001). J Chem Phys 114:5982CrossRefGoogle Scholar
  20. 20.
    Furche F, Ahlrichs R (2002). J Chem Phys 117:7433CrossRefGoogle Scholar
  21. 21.
    Hummel P, Oxgaard J, Goddard WA III, Gray HB (2005). J Coord Chem 58:41CrossRefGoogle Scholar
  22. 22.
    Hummel P, Oxgaard J, Goddard WA III, Gray HB (2005). Inorg Chem 44: 2454CrossRefGoogle Scholar
  23. 23.
    Hummel P, Winkler JR, Gray HB (2006). Dalton Trans 1:168CrossRefGoogle Scholar
  24. 24.
    Hummel P, Halpern-Manners N, Gray HB (2006). Inorg Chem 45:7397CrossRefGoogle Scholar
  25. 25.
    Pink M, Billing R (1996). Z Kristallogr 211:203CrossRefGoogle Scholar
  26. 26.
    Bendix J, Deeth RJ, Weyhermüller T, Bill E, Wieghardt K (2000). Inorg Chem 39:930CrossRefGoogle Scholar
  27. 27.
    Villalba MEC, Guida JA, Piro OE, Castellano EE, Aymonino PJ (2001). J Chem Crystallogr 31:155CrossRefGoogle Scholar
  28. 28.
    Nugent WA, Mayer JM (1988) Metal-ligand multiple bonds. Wiley-Interscience, New YorkGoogle Scholar
  29. 29.
    Manoharan PT, Gray HB (1966). Inorg Chem 5:823CrossRefGoogle Scholar
  30. 30.
    Schreiner AF, Lin SW, Hauser PJ, Hopcus EA, Hamm DJ, Gunter JD (1972). Inorg Chem 11:880CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Patrick Hummel
    • 1
  • Jay R. Winkler
    • 1
  • Harry B. Gray
    • 1
  1. 1.California Institute of TechnologyPasadenaUSA

Personalised recommendations