Advertisement

Theoretical Chemistry Accounts

, Volume 117, Issue 5–6, pp 1093–1104 | Cite as

An integrated computational tool for the study of the optical properties of nanoscale devices: application to solar cells and molecular wires

  • Filippo De Angelis
  • Simona Fantacci
  • Antonio Sgamellotti
Regular Article

Abstract

We present a combined computational strategy for the study of the optical properties of nanoscale systems, using a combination of codes and techniques based on Density Functional Theory (DFT) and its Time Dependent extension (TDDFT). In particular, we describe the use of Car–Parrinello molecular dynamics simulations for the study of nanoscale devices and show the integration of the obtained results with available quantum chemistry codes for the calculation of TDDFT excitation energies, including solvation effects by continuum solvation models. We review some prototypical applications of this integrated computational strategy, ranging from the interaction of dye sensitizers with TiO2 nanoparticles, of interest in the field of dye-sensitized solar cells, to transition metal molecular wires exceeding 3 nm length.

Keywords

Car–Parrinello TDDFT Excited states Nanoscale devices Solar cells Molecular wires 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Car R, Parrinello M (1985). Phys Rev Lett 55:2471CrossRefGoogle Scholar
  2. 2.
    De Angelis F, Fantacci S, Sgamellotti A (2006). Coord Chem Rev 250:1497CrossRefGoogle Scholar
  3. 3.
    De Angelis F, Tarantelli F, Alunni S (2006). J Phys Chem B 110:11014CrossRefGoogle Scholar
  4. 4.
    Andruniov T, Fantacci S, De Angelis F, Ferrè N, Olivucci M (2005). Angew Chem Int Ed 44:6077CrossRefGoogle Scholar
  5. 5.
    Giannozzi P, De Angelis F, Marzari N (2005) Car R First principle molecular dynamics. In: Yip S, (eds) Handbook of materials modeling. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. 6.
    Pavone M, Cimino P, De Angelis F, Barone V (2006). J Am Chem Soc 128:4338CrossRefGoogle Scholar
  7. 7.
    Crescenzi O, Pavone M, De Angelis F, Barone V (2005). J Phys Chem B 109:445CrossRefGoogle Scholar
  8. 8.
    Pavone M, Benzi C, De Angelis F, Barone V (2004). Chem Phys Lett 395:120CrossRefGoogle Scholar
  9. 9.
    Hetényi B, De Angelis F, Giannozzi P, Car R (2004). J Phys Chem 120:8632CrossRefGoogle Scholar
  10. 10.
    Fantacci S, De Angelis F, Sgamellotti A, Marrone A, Re N (2005). J Am Chem Soc 127:14144CrossRefGoogle Scholar
  11. 11.
    De Angelis F, Jarzecki A A, Car R, Spiro T G (2005). J Phys Chem B 109:3065CrossRefGoogle Scholar
  12. 12.
    Miertus S, Scrocco E, Tomasi J (1981). Chem Phys 55:117CrossRefGoogle Scholar
  13. 13.
    Barone V, Cossi M (1998). J Phys Chem A 102:1995CrossRefGoogle Scholar
  14. 14.
    Cossi M, Rega N, Scalmani G, Barone V (2003). J Comput Chem 24:669CrossRefGoogle Scholar
  15. 15.
    Klamt A, Schurmann G (1993) J Chem Soc Perkin 2 Trans 799Google Scholar
  16. 16.
    Klamt A, Jonas V (1996). J Chem Phys 105:9972CrossRefGoogle Scholar
  17. 17.
    Pye C C, Ziegler T (1999). Theor Chem Acc101:396Google Scholar
  18. 18.
    Fantacci S, De Angelis F, Selloni A (2003). J Am Chem Soc 125:4381CrossRefGoogle Scholar
  19. 19.
    Alunni S, De Angelis F, Ottavi L, Papavasileiou M, Trantelli F (2005). J Am Chem Soc 127:15151CrossRefGoogle Scholar
  20. 20.
    Casida M (1995) Time dependent density functional response theory for molecules. In: Chong DP (eds) Recent advances in density functional methods vol 1. World Scientific, Singapore, pp. 155Google Scholar
  21. 21.
    Fantacci S, Migani A, Olivucci M (2004). J Phys Chem A 108:1208CrossRefGoogle Scholar
  22. 22.
    Dreuw A, Head-Gordon M (2004). J Am Chem Soc 126:4007CrossRefGoogle Scholar
  23. 23.
    Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andres L (1999). Mol Phys 97:859CrossRefGoogle Scholar
  24. 24.
    De Angelis F, Car R, Spiro TG (2003). J Am Chem Soc 125:15710CrossRefGoogle Scholar
  25. 25.
    De Angelis F, Fantacci S, Selloni A, Nazeeruddin MK (2005). Chem Phys Lett 415:115CrossRefGoogle Scholar
  26. 26.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005). J Am Chem Soc 127:16835CrossRefGoogle Scholar
  27. 27.
    Iyengar SS, Schegel HB, Millan JM, Voth GA, Scuseria GE, Frisch MJ (2001). J Chem Phys 114:9758CrossRefGoogle Scholar
  28. 28.
    Schegel HB, Millan JM, Iyengar SS, Daniels AD, Scuseria GE, Frisch MJ (2001). J Chem Phys 115:10291CrossRefGoogle Scholar
  29. 29.
    Vanderbilt D (1990). Phys Rev B 41:7892CrossRefGoogle Scholar
  30. 30.
    Pasquarello A, Laasonen K, Car R, Lee C, Vanderbilt D (1992). Phys Rev Lett 69:1982CrossRefGoogle Scholar
  31. 31.
    Giannozzi P, De Angelis F, Car R (2004). J Chem Phys 120:5903CrossRefGoogle Scholar
  32. 32.
    Fantacci S, De Angelis F, Sgamellotti A, Re N (2004). Chem Phys Lett 396:43CrossRefGoogle Scholar
  33. 33.
    De Angelis F, Sgamellotti A, Re N (2002). Organometallics 21:2715CrossRefGoogle Scholar
  34. 34.
    Fantacci S, De Angelis F, Sgamellotti A, Re N (2001). Organometallics 20:4031CrossRefGoogle Scholar
  35. 35.
    te Velde G, Bickelhaupt F M, Baerends EJ, van Gisbergen SJA, Fonseca-Guerra C, Snjders J G, Ziegler T (2001). J Comput Chem 22:931CrossRefGoogle Scholar
  36. 36.
    te Velde G, Baerends EJ (1992). J Comp Phys 99:84CrossRefGoogle Scholar
  37. 37.
    Baerends EJ, Ellis DE, Ros P (1973). Chem Phys 2:42Google Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.05. Gaussian, Inc., Pittsburgh PAGoogle Scholar
  39. 39.
    Cossi M, Barone V (2001). J Chem Phys 115:4708CrossRefGoogle Scholar
  40. 40.
    De Angelis F, Fantacci S, Selloni A (2004). Chem Phys Lett 389:204CrossRefGoogle Scholar
  41. 41.
    Grätzel M (2001). Nature 414:338CrossRefGoogle Scholar
  42. 42.
    O’Regan B, Grätzel M (1991). Nature 53:737CrossRefGoogle Scholar
  43. 43.
    Nazeeruddin M K, Kay A, Rodicio I, Humphry-Baker R, Muller E, Liska P, Vlachopoulos N, Grätzel M (1993). J Am Chem Soc 115:6382CrossRefGoogle Scholar
  44. 44.
    Guillemoles J F, Barone, Joubert L, Adamo C (2002). J Phys Chem A 106:11354CrossRefGoogle Scholar
  45. 45.
    Monat J E, Rodriguez J H, McCusker J K (2002). J Phys Chem 106:7399Google Scholar
  46. 46.
    Cecchet F, Gioacchini A M, Marcaccio M, Paolucci F, Roffia S, Alebbi M, Bignozzi C A (2002). J Phys Chem B 106:3926CrossRefGoogle Scholar
  47. 47.
    Rensmo H, Södergren S, Patthey L, Westmark K, Vayssieres L, Khole O, Bru hwiler PA, Hagfeldt A, Siegbahn H (1997). Chem Phys Lett 274:51CrossRefGoogle Scholar
  48. 48.
    Barolo C, Nazeeruddin M K, Fantacci S, Di Censo D, Compte P, Liska P, Viscardi G, Quagliotto P, De Angelis F, Grätzel M (2006). Inorg Chem 45:4642CrossRefGoogle Scholar
  49. 49.
    Nazeeruddin M K, Bessho T, Ito S, Klein C, De Angelis F, Fantacci S, Comte P, Liska P, Imai H, Grätzel M (2006) J. Photochem Photobiol A (in press)Google Scholar
  50. 50.
    De Angelis F, Tilocca A, Selloni A (2004). J Am Chem Soc 126:15024CrossRefGoogle Scholar
  51. 51.
    Becke A D (1993). Chem Phys 98:5648CrossRefGoogle Scholar
  52. 52.
    Godbout N, Salahub D R, Andzelm J, Wimmer E (1992). Can J Chem 70:560CrossRefGoogle Scholar
  53. 53.
    Binkley J S, Pople J A, Hehre W J (1980). J Am Chem Soc102:939CrossRefGoogle Scholar
  54. 54.
    Perdew JP, Burke K, Ernzerhof M (1996). Phys Rev Lett 77:3865CrossRefGoogle Scholar
  55. 55.
    Khoudiakov M, Parise AR, Brunschwig BS (2003). J Am Chem Soc 125:4637CrossRefGoogle Scholar
  56. 56.
    Weng YX, Wang YQ, Asbury JB, Ghosh HN, Lian T (2000). J Phys Chem B 104:93CrossRefGoogle Scholar
  57. 57.
    Williamson AJ, Grossman JC, Hood RQ, Puzder A, Galli G (2002). Phys Rev Lett 89:196803CrossRefGoogle Scholar
  58. 58.
    Matxain JM, Mercero JM, Fowler JE,Ugalde JM (2003). J Am Chem Soc 125:9494CrossRefGoogle Scholar
  59. 59.
    Persson P, Lundqvist M J (2005). J Phys Chem B 109:11918CrossRefGoogle Scholar
  60. 60.
    Tour JM (2000). Acc. Chem. Res. 33:791CrossRefGoogle Scholar
  61. 61.
    Balzani V, Juris A, Venturi M, Campagna S, Serroni S (1996). Chem Rev 96:759CrossRefGoogle Scholar
  62. 62.
    Swager T M (1998). Acc Chem Res 31:201CrossRefGoogle Scholar
  63. 63.
    Malliaras GG, Scott JC (2000) The chemistry, physics and engineering of organic light-emitting diodes. In: Hadziioannou G, van Hutten PF (eds) Semiconducting Polymers. Wiley–VCH, New York, WeinheimGoogle Scholar
  64. 64.
    Fantacci S, De Angelis F, Wang J, Bernhard S, Selloni A (2004). J Am Chem Soc 126:9715CrossRefGoogle Scholar
  65. 65.
    Dunning TH Jr., Hay PJ In: Modern theoretical chemistry, vol. 3. Schaefer HF III (ed) Plenum, New York, p 1–28Google Scholar
  66. 66.
    Hay PJ, Wadt W R (1985). J Chem Phys 82:270CrossRefGoogle Scholar
  67. 67.
    Wadt WR, Hay PJ (1985). J Chem Phys 82:284CrossRefGoogle Scholar
  68. 68.
    Hay PJ, Wadt WR (1985). J Chem Phys 82:299CrossRefGoogle Scholar
  69. 69.
    Hehre WJ, Stewart RF, Pople JA (1969). J Chem Phys 51:2657CrossRefGoogle Scholar
  70. 70.
    Tsuda A, Osuka A (2001). Science 293:79CrossRefGoogle Scholar
  71. 71.
    De Angelis F, Fantacci S, Sgamellotti A, Cariati E, Ugo R, Ford P C (2006) Inorg Chem (in press)Google Scholar
  72. 72.
    Locatelli D, Quici S, Roberto D, De Angelis F (2005) Chem Comm 5404:Google Scholar
  73. 73.
    De Angelis F, Fantacci S, Sgamellotti A, Cariati F, Roberto D, Tessore F, Ugo R (2006) Dalton Trans 852Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Filippo De Angelis
    • 1
  • Simona Fantacci
    • 1
  • Antonio Sgamellotti
    • 1
  1. 1.Istituto CNR di Scienze e Tecnologie Molecolari (ISTM-CNR), c/o Dipartimento di ChimicaUniversità di PerugiaPerugiaItaly

Personalised recommendations