Theoretical Chemistry Accounts

, Volume 119, Issue 1–3, pp 113–131 | Cite as

Characterizing vibrational motion beyond internal coordinates

Regular Article


We present a procedure for the decomposition of the normal modes of a composite system, including its rotations and translations, into those of fragments. The method permits—by the cross-contraction of dyads of mass-weighted displacement vectors, without recourse to valence coordinates—the direct comparison of nuclear motions of structurally similar but otherwise arbitrary fragments of molecules, and it leads to a quantitative definition of the similarity and the overlap of nuclear motions. We illustrate its usefulness by the quantification of the mixing of the normal modes of formic acid monomers upon the formation of a dimer, by the comparison of the overlap of the intermolecular normal vibrations of the water dimer computed with different ab initio schemes, and by the comparison of similarity and overlap of vibrations of (4S,7R)-galaxolide and (4S)-4-methylisochromane. The approach is expected to become a standard tool in vibrational analysis.


Overlap of nuclear motion Similarity Normal modes Vibrational energy distribution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sverdlov LM, Kovner MA, Krainov EP (1974). Vibrational spectra of polyatomic molecules. Halsted, New YorkGoogle Scholar
  2. 2.
    Holzwarth G, Hsu EC, Mosher HS, Faulkaner TR, Moscowitz A (1974). J Am Chem Soc 96:251CrossRefGoogle Scholar
  3. 3.
    Nafie LA, Cheng JC, Stephens PJ (1975). J Am Chem Soc 97:3842CrossRefGoogle Scholar
  4. 4.
    Nafie LA, Keiderling TA, Stephens PJ (1976). J Am Chem Soc 98:2715CrossRefGoogle Scholar
  5. 5.
    Barron LD, Bogaard MP, Buckingham AD (1973). J Am Chem Soc 95:603CrossRefGoogle Scholar
  6. 6.
    Barron LD, Bogaard MP, Buckingham AD (1973). Nature 241:113CrossRefGoogle Scholar
  7. 7.
    Hug W, Kint S, Bailey GF, Scherer JR (1975). J Am Chem Soc 97:5589CrossRefGoogle Scholar
  8. 8.
    Herzberg G (1945) Molecular structure and molecular spectra. II. Infrared and Raman spectra of polyatomic molecules. van Nostrand, New YorkGoogle Scholar
  9. 9.
    Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations. Dover, New YorkGoogle Scholar
  10. 10.
    Fogarasi G, Pulay P (1985). Vib Spectra Struct 14:125–219Google Scholar
  11. 11.
    Dollish FR, Fateley WG, Bentley FF (1974) Characteristic Raman frequencies of organic compounds. Wiley, New YorkGoogle Scholar
  12. 12.
    Colthup NB, Daly LH, Wiberly SE (1975) Infrared and Raman spectroscopy. Academic, New YorkGoogle Scholar
  13. 13.
    Ashvar CS, Devlin FJ, Stephens PJ, Bak KL, Eggimann T, Wieser H (1998). J Phys Chem A 102:6842–6857CrossRefGoogle Scholar
  14. 14.
    Hug W, Zuber G, de Meijere A, Khlebnikov AF, Hansen H-J (2001). Helv Chim Acta 84:1CrossRefGoogle Scholar
  15. 15.
    Ruud K, Helgaker T, Bouř P (2002). J Phys Chem A 106:7448CrossRefGoogle Scholar
  16. 16.
    Zuber G, Hug W (2004). Helv Chim Acta 87:2208CrossRefGoogle Scholar
  17. 17.
    Jalkanen KJ, Nieminen RM, Frimand K, Bohr J, Bohr H, Wade RC, Tajkhorshid E, Suhai S (2001). Chem Phys 65:125CrossRefGoogle Scholar
  18. 18.
    Jalkanen KJ, Nieminen RM, Knapp-Mohammady M, Suhai S (2003). Int J Quant Chem 92:239CrossRefGoogle Scholar
  19. 19.
    Stephens PJ, Devlin FJ, Chabalowsky CF, Frisch MJ (1994). J Phys Chem 98:11623CrossRefGoogle Scholar
  20. 20.
    Stephens PJ, Devlin FJ, Ashvar CS, Chabalowsky CF, Frisch MJ (1994). Farad Discuss 99:103–119CrossRefGoogle Scholar
  21. 21.
    Hug W (2001). Chem Phys 264:53CrossRefGoogle Scholar
  22. 22.
    Califano S (1976) Vibrational States. Wiley, New YorkGoogle Scholar
  23. 23.
    Melnik DG, Gopalakrishnan S, Miller TA (2003). J Chem Phys 118:3589CrossRefGoogle Scholar
  24. 24.
    Cuony B, Hug W (1981). Chem Phys Lett 84:131CrossRefGoogle Scholar
  25. 25.
    Goldstein H (1980) Classical mechanics. Addison-Wesley, ReadingGoogle Scholar
  26. 26.
    Rosenfeld L (1965) Theory of electrons. Dover, New YorkGoogle Scholar
  27. 27.
    Kabsch W (1976). Acta Cryst A32:922–923CrossRefGoogle Scholar
  28. 28.
    Kabsch W (1978). Acta Cryst A34:827–828CrossRefGoogle Scholar
  29. 29.
    Heisterberg DJ (1990). A program to superimpose atoms of two molecules by the quaternion method. Scholar
  30. 30.
    Kneller GR (1991). Mol Simul 7:113–119CrossRefGoogle Scholar
  31. 31.
    Fedorovsky M (2006). PyVib2, a program for analyzing vibrational motion and vibrational spectra, 2006. To be published under the general public licence.Google Scholar
  32. 32.
    Becke AD (1997). J Chem Phys 107:8554CrossRefGoogle Scholar
  33. 33.
    Hamprecht FA, Cohen AJ, Tozer DJ, Handy NC (1998). J Chem Phys 109:6264CrossRefGoogle Scholar
  34. 34.
    Jensen F (2001). J Chem Phys 115:9113–9125CrossRefGoogle Scholar
  35. 35.
    Jensen F (2002a). J Chem Phys 116:7372–7379CrossRefGoogle Scholar
  36. 36.
    Jensen F (2002b). J Chem Phys 117:9234–9240CrossRefGoogle Scholar
  37. 37.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, xKeith DJ, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.01. Gaussian Inc., WallingfordGoogle Scholar
  38. 38.
    Hug W, Fedorovsky M (2006). To be publishedGoogle Scholar
  39. 39.
    Hug W, Haesler J (2005). Int J Quant Chem 104:695–715CrossRefGoogle Scholar
  40. 40.
    Handy NC, Cohen AJ (2001). Mol Phys 99:403CrossRefGoogle Scholar
  41. 41.
    Hoe W-M, Cohen AJ, Handy NC Chem Phys Lett 341:319Google Scholar
  42. 42.
    Kendall RA, Dunning TH Jr (1992). J Chem Phys 96:6796–6806CrossRefGoogle Scholar
  43. 43.
    Stanton JF, Gauss J, Watts JD, Nooijen M, Oliphant N, Perera SA, Szalay PG, Lauderdale WJ, Kucharski SA, Gwaltney SR, Beck S, Balkova A, Bernholdt DE, Baeck KK, Rozyczko P, Sekino H, Hober C, Bartlett RJ (2005). ACESII, Advanced Concepts in Electronic Structure, v.2.4.0-stableGoogle Scholar
  44. 44.
    Cheeseman PJ, Frisch MJ, Devlin FJ, Stephens PJ (1996). J Chem Phys Lett 252:211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of FribourgFribourgSwitzerland

Personalised recommendations