Theoretical Chemistry Accounts

, Volume 117, Issue 1, pp 127–135 | Cite as

Ionic liquid-alkane association in dilute solutions

  • Alain Berthod
  • John J. Kozak
  • Jared L. Anderson
  • Jie Ding
  • Daniel W. Armstrong
Regular Article

Abstract

Enthalpies and entropies of transfer were measured by gas chromatography for dilute solutions of a homologous series of eight even n-alkanes (from octane to docosane) into six different ionic liquids (ILs) (namely, 1-butyl-3-methylimidazolium chloride, bromide, iodide, triflate and hexafluorophosphate; plus N-butylmethylpyridinium bis {(trifluoromethyl) sulfonyl}-imide) over the 80–150 °C temperature range, all ILs being in the liquid state. Over a narrow concentration range, the entropic change may be consistent with a solvophobic association model of n-alkanes in ILs. A very simple model is proposed to account for the thermodynamic data. This approach can be used to approximate interionic distances and possible dielectric constants for ILs. Although the model may have some use in dilute alkane-IL solutions, more sophisticated models, particularly for the enthalpic contributions, are desirable.

Keywords

Molten salts Ionic liquid Thermodynamics Hydrophobic association Alkanes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Rogers RD, Seddon KR (eds) (2002). Ionic liquids industrial applications to green chemistry. ACS Symporium Ser. 818. American Chemical Society, WashingtonGoogle Scholar
  2. 2.
    Wasserscheid P, Welton T (eds) (2002). Ionic liquids in synthesis. Wiley-VCH Verlag Gmbh & Co., WeinhelmGoogle Scholar
  3. 3.
    Rogers RD, Seddon KR (eds) (2002). Ionic liquids as green solvents progress and prospects. ACS Symposium Series 856. American Chemical Society, WashingtonGoogle Scholar
  4. 4.
    Wilkes JS, Zaworotko MJ (1992). J Chem Soc Chem Commun 965Google Scholar
  5. 5.
    Suarez PAZ, Dullius JEL, Einloft S, DuSouza RF, Dupont J (1996). Polyhedron 15:1217CrossRefGoogle Scholar
  6. 6.
    Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD, Chem Commun 1765Google Scholar
  7. 7.
    Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996). Inorg Chem 35:1168CrossRefGoogle Scholar
  8. 8.
    Welton T (1999). Chem Rev 99:2071CrossRefGoogle Scholar
  9. 9.
    Kim HS, Kim YJ, Lee H, Park KY, Lee C, Chin CS (2002). Angew Chem Int Ed 41:4300CrossRefGoogle Scholar
  10. 10.
    Lozano P, De T, Diego Carrie D, Vaultier M, Iborra JL (2002). J Mol Catal B 21:7Google Scholar
  11. 11.
    Sheldon, RA, Chem. Comm. (2001) 2399Google Scholar
  12. 12.
    Wasserscheid P, Keim W (2000). Angew Chem Int Ed Engl 39:3772CrossRefGoogle Scholar
  13. 13.
    Sheldon RA, Lau RM, Sorgedrager MJ, van Rantwijk F, Seddon KR (2002). Green Chem 4:146CrossRefGoogle Scholar
  14. 14.
    Earle MJ, McCormac PB, Seddon KR (1999). Green KR, Chemistry 1:23CrossRefGoogle Scholar
  15. 15.
    Wasserscheid P, Bosmann A, Bolm C (2002) Chem Commun 200Google Scholar
  16. 16.
    Ishida Y, Miyauchi H, Saigo K (2002) Chem Commun 2240Google Scholar
  17. 17.
    Ding J, Desikan V, Han X, Xiao TL, Ding R, Jenks WS, Armstrong DW (2005). Org Lett 7:335CrossRefGoogle Scholar
  18. 18.
    Pegot B, Thanh G, Gori D, Loupy A (2004). Tetrahedron Letters 45:6425CrossRefGoogle Scholar
  19. 19.
    Carda-Broch S, Berthod A, Armstrong DW (2003). Anal Bioanal Chem 375:191Google Scholar
  20. 20.
    Dai S, Ju YH, Barnes CE (1999) J Chem Soc Dalton Trans 1201Google Scholar
  21. 21.
    Visser AE, Swatloski RP, Reichert WM, Mayton R, Sheff S, Wierzbicki A, Davis JH, Rogers RD (2001) Chem Commun 135Google Scholar
  22. 22.
    Chun S, Dzyuba SV, Bartsch RA, (2001). Anal. Chem. 73:3737CrossRefGoogle Scholar
  23. 23.
    Armstrong DW, He L, Liu LS (1999). Anal Chem 71:3873CrossRefGoogle Scholar
  24. 24.
    Berthod A, He L, Armstrong DW (2001). Chromatographia 53:63CrossRefGoogle Scholar
  25. 25.
    Anderson JL, Armstrong DW (2003). Anal Chem 75:4851CrossRefGoogle Scholar
  26. 26.
    Ding J, Welton T, Armstrong DW (2004). Anal Chem 76:6819CrossRefGoogle Scholar
  27. 27.
    Armstrong DW, Zhang LK, He L, Gross ML (2001). Anal Chem 73:3689Google Scholar
  28. 28.
    Carda-Broch S, Berthod A, Armstrong DW (2003). Rapid Commun Mass Spectrom 17:553CrossRefGoogle Scholar
  29. 29.
    Mank M, Stahl B, Boehm G (2004). Anal Chem 76:2938CrossRefGoogle Scholar
  30. 30.
    Li YL, Gross ML (2004). J Am Soc Mass Spectrom 15:1833CrossRefGoogle Scholar
  31. 31.
    Dickenson VE, Williams ME, Hendrickson SM, Masui H, Murray RW (1999). J Am Chem Soc 121:613CrossRefGoogle Scholar
  32. 32.
    Bhatt AI, May I, Volkovich VA, Hetherington ME, Lewin B, Tied RC, Ertok N (2002) J Chem Soc, Dalton Trans 4532Google Scholar
  33. 33.
    Lagrost C, Carrie D, Vaultier M, Hapiot P (2003). Phys J, Chem A 107:745CrossRefGoogle Scholar
  34. 34.
    Leone AM, Weatherly SC, Williams ME, Thorp HH, Murray RW (2001). J Am Chem Soc 123:218CrossRefGoogle Scholar
  35. 35.
    Ue M, Takeda M, (2002). J Korean Electrochem Soc 5:192Google Scholar
  36. 36.
    Wang P, Zakeeruddin SM, Comte P, Exnar I, Gratzel M (2003). J Am Chem Soc 125:1166CrossRefGoogle Scholar
  37. 37.
    Anderson JL, Ding J, Welton T, Armstrong DW, (2002). J Am Chem Soc 124:14247CrossRefGoogle Scholar
  38. 38.
    Swatloski RP, Spear SK, Holbrez JD, Rogers RD (2002). J Am Chem Soc 124:4974CrossRefGoogle Scholar
  39. 39.
    Anderson JL, Pino V, Hagberg EC, Shears VV, Armstrong DW (2003) Chem Comm 2444Google Scholar
  40. 40.
    Fletcher KA, Pandey S (2004). Langmuir 20:33CrossRefGoogle Scholar
  41. 41.
    Noel MAM, Allendoerfer RD, Osteryoung RA (1992). J Phys Chem 96:2391CrossRefGoogle Scholar
  42. 42.
    Karmakar R, Samanta A (2002). J Phys Chem A 106:4447CrossRefGoogle Scholar
  43. 43.
    Karmakar R, Samanta A (2003). J Phys Chem A 107:7340CrossRefGoogle Scholar
  44. 44.
    Ingram JA, Moog RS, Ito N, Biswas R, Marancelli M (2003). J Phys Chem B 107:5926CrossRefGoogle Scholar
  45. 45.
    Chakrabarty D, Hazra P, Chakrabarty A, Seth D, Sarkar N (2003). Chem Phys Lett 381:697CrossRefGoogle Scholar
  46. 46.
    Arzhantsev S, Ito N, Heitz M, Maroncelli M (2003). Chem Phys Lett 381:278CrossRefGoogle Scholar
  47. 47.
    Chowdhury PK, Halder M, Sanders LE, Calhoun T, Anderson JL, Armstrong DW, Song X, Petrich JW (2004). J Phys Chem B 108:10245CrossRefGoogle Scholar
  48. 48.
    Holbrey JD, Reichert WM, Nieuwenhuyzen M, Sheppard O, Hardacre C, Rogers RD (2003) Chem Comm 476Google Scholar
  49. 49.
    Kozak JJ, Knight WS, Kauzmann J (1968). J Chem Phys 48:675CrossRefGoogle Scholar
  50. 50.
    Franks F (1974) Water. A Comprehensive Treatise. Plenum Press, New York vol 4, Chapter 1, pp 1–94Google Scholar
  51. 51.
    Rayss J, Patrykiejew A Serpinet J (1989). Thin Solid Films 173:13CrossRefGoogle Scholar
  52. 52.
    Flory PJ (1942). Chem Phys 10:51CrossRefGoogle Scholar
  53. 53.
    Huggins ML (1942). Ann Acad NY Sci 43:1Google Scholar
  54. 54.
    Moelwyn-Hugues EA (19957) Physical Chemistry. Pergamon Press, London pp 543Google Scholar
  55. 55.
    Katayanagi H, Hayashi S, Hamagushi H, Nishikawa K (2004). Chem Phys Lett 392:460CrossRefGoogle Scholar
  56. 56.
    Holbrey JD, Reichert WM, Nieuwenhuyzen M, Johnston S, Seddon KR, Rogers RD (2003) Chem Comm 1636Google Scholar
  57. 57.
    Saha S, Hayashi S, Kobayashi A, Hamagushi H (2003). Chem Lett 32:740CrossRefGoogle Scholar
  58. 58.
    Glesen DJ, Cramer CJ, Truhlar DG (1995). J Phys Chem 99:7137CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Alain Berthod
    • 1
  • John J. Kozak
    • 2
  • Jared L. Anderson
    • 3
  • Jie Ding
    • 4
  • Daniel W. Armstrong
    • 4
  1. 1.Laboratoire des Sciences Analytiques, CNRSUniversité de LyonVilleurbanneFrance
  2. 2.Beckman Institute, California Institute of TechnologyPasadenaUSA
  3. 3.Department of ChemistryUniversity of ToledoToledoUSA
  4. 4.Department of ChemistryUniversity of Texas-ArlingtonArlingtonUSA

Personalised recommendations