Theoretical Chemistry Accounts

, Volume 117, Issue 2, pp 283–290

Relative Raman Intensities in C6H6, C6D6, and C6F6: A Comparison of Different Computational Methods

  • Stephen D. Williams
  • Timothy J. Johnson
  • Thomas P. Gibbons
  • Christopher L. Kitchens
Regular Article

Abstract

The accuracy of various computational methods (Hartree–Fock, MP2, CCSD, CAS-SCF, and several types of DFT) for predicting relative intensities in Raman spectra for C6H6, C6D6, and C6F6 was compared. The predicted relative intensities for ν1 and ν2 were compared with relative intensities measured by an FT-Raman spectrometer. While none of these methods excelled at this prediction, Hartree–Fock with a large basis set was most successful for C6H6 and C6D6, while PW91PW91 was the most successful for C6F6.

Keywords

Relative Raman intensity Ab initio Hartree–Fock MP2 DFT CCSD CAS-SCF Fourier Transform Raman FT-Raman 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scott AP, Radom LJ (1996) J Phys Chem 100:16502, http://srdata.nist.gov/cccbdb/vsf.asp (accessed 8/13/2004)Google Scholar
  2. 2.
    Kormornicki A, McIver JW (1979). J Chem Phys 70:2014CrossRefGoogle Scholar
  3. 3.
    Ozkabak AG, Thakur SN, Goodman L (1991). Int J Quantum Chem 39:411CrossRefGoogle Scholar
  4. 4.
    Tai S, Papasavva S, Kenny JE, Gilbert BD, Janni JA, Steinfeld JI, Taylor JD, Weinstein RD (1999). Spectrochim Acta Part A 55:9Google Scholar
  5. 5.
    Furlan A, Fischer T, Fluekiger P, Güdel HU, Leutwyler S, Lüthi HP, Riley MJ, Weber J (1992). J Phys Chem 96:10713CrossRefGoogle Scholar
  6. 6.
    Johnson BG, Florian J (1995). Chem Phys Lett 247:120CrossRefGoogle Scholar
  7. 7.
    Stirling A (1996). J Chem Phys 104:1254CrossRefGoogle Scholar
  8. 8.
    Kozlowski PM, Rauhut G, Pulay P (1995). J Chem Phys 103:5650CrossRefGoogle Scholar
  9. 9.
    Kozlowski PM, Jarzecki AA, Pulay P, Li XY, Zgierski MZ (1996). J Phys Chem 100:13985CrossRefGoogle Scholar
  10. 10.
    Shinohara H, Yamakita Y, Ohno K (1998). J Mol Struct 442:221CrossRefGoogle Scholar
  11. 11.
    Wojciechowski PM, Zierkiewicz W, Michalska D, Hobza P (2003). J Chem Phys 118:10900CrossRefGoogle Scholar
  12. 12.
    Oakes RE, Bell SEJ, Benkova Z, Sadlej AJ (2005). J Comp Chem 26:154CrossRefGoogle Scholar
  13. 13.
    Oakes RE, Beattie JR, Moss BW, Bell SEJ (2002). J Mol Struct (Theochem) 586:91CrossRefGoogle Scholar
  14. 14.
    Oakes RE, Beattie JR, Moss BW, Bell SEJ (2003). J Mol Struct (Theochem) 626:27CrossRefGoogle Scholar
  15. 15.
    Oakes RE, Spence SJ, Bell SEJ (2003). J Phys Chem A 107:2964CrossRefGoogle Scholar
  16. 16.
    Oakes RE, Bell SEJ (2003). J Phys Chem A 107:10953CrossRefGoogle Scholar
  17. 17.
    Michalska D, Wysokinski R (2005). Chem Phys Lett 403:211CrossRefGoogle Scholar
  18. 18.
    McCreery RL (2002) In: Chalmers JM, Griffiths, PR (eds) Handbook of Vibrational Spectroscopy, Vol 1, Wiley, New York, pp 920–932Google Scholar
  19. 19.
    Johnson TJ, Sams RL, Blake TA, Sharpe SW, Chu PM (2002). Appl Opt 41:2831Google Scholar
  20. 20.
    Bertie JE (1998). Pure Appl Chem 70:2039Google Scholar
  21. 21.
    Schrader B, Hoffmann A, Simon A, Podschadlowski R, Tischer M (1990). J Mol Struct 217:207CrossRefGoogle Scholar
  22. 22.
    Chase DB (1986). J Am Chem Soc 108:7485CrossRefGoogle Scholar
  23. 23.
    Sharpe SW, Johnson TJ, Sams RL, Chu PM, Rhoderick GC, Johnson PA (2004). Appl Spec 58:1452CrossRefGoogle Scholar
  24. 24.
    Rothman LS (2003). J Quant Spectrosc Radiat Transf 82:5CrossRefGoogle Scholar
  25. 25.
    Long DA (1977). Raman spectroscopy. McGraw-Hill, New YorkGoogle Scholar
  26. 26.
    Hoffmann A, Keller S, Schrader B, Ferwerda R, van der Maas JH (1991). J Raman Spectrose 22:497CrossRefGoogle Scholar
  27. 27.
    Schrader B, Hoffmann A, Simon A, Sawatzki J (1991). Vib Spectrosc 1:239CrossRefGoogle Scholar
  28. 28.
    Angel RJ (2003). J Appl Crystallogr 36:295CrossRefGoogle Scholar
  29. 29.
    Fernandez-Sanchez JM, Murphy WF (1994). Chem Phys 179:479CrossRefGoogle Scholar
  30. 30.
    Gaussian 98, Revision A.9, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian, Inc., PittsburghGoogle Scholar
  31. 31.
    Gaussian 03, Revision B.04, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian, Inc., PittsburghGoogle Scholar
  32. 32.
    Fast PL, Sanchez ML, Truhlar DG (1999). Chem Phys Lett 306:407CrossRefGoogle Scholar
  33. 33.
    Curtiss LA, Redfern PC, Raghavachari K, Rasslov V, Pople JA (1999). J Chem Phys 110:4703CrossRefGoogle Scholar
  34. 34.
    Curtiss LA, Raghavachari K, Redfern PC, Rasslov V, Pople JA (1998). J Chem Phys 119:7764CrossRefGoogle Scholar
  35. 35.
    Kendall RA, Dunning TH Jr, Harrison RJ (1992). J Chem Phys 96:6796CrossRefGoogle Scholar
  36. 36.
    Herzberg G (1945) Molecular spectra and molecular structure II. Infrared and Raman spectra of polyatomic molecules. Van Nostrand Reinhold, New YorkGoogle Scholar
  37. 37.
    Fernandez-Sanchez JM, Montero S (1989). J Chem Phys 90:2909CrossRefGoogle Scholar
  38. 38.
    Delbouille L (1956). J Chem Phys 25:182CrossRefGoogle Scholar
  39. 39.
    Laposa JD, Montgomery C (1982). Spectrochim Acta 38A:1109Google Scholar
  40. 40.
    Yumura T, Koga M, Hoshikawa H, Nibu Y, Shimada R, Shimada H (1998). Bull Chem Soc Jpn 71:349CrossRefGoogle Scholar
  41. 41.
    Suzuki Y, Shimada H, Shimada R (1996). Bull Chem Soc Jpn 69:3081CrossRefGoogle Scholar
  42. 42.
    Benkova Z, Sadlej AJ, Oakes RE, Bell SEJ (2005). J Comput Chem 26:145CrossRefGoogle Scholar
  43. 43.
    Benkova Z, Sadlej AJ, Oakes RE, Bell SEJ (2005). Theor Chem Acc 113:238CrossRefGoogle Scholar
  44. 44.
    Maslen PE, Handy NC, Amos RD, Jayatilaka D (1992). J Chem Phys 97:4233CrossRefGoogle Scholar
  45. 45.
    Ballik EA, Ramsay DA (1963). Astrophys J 84:137Google Scholar
  46. 46.
    Rydbeck OEH, Ellder J, Irvine WM (1973). Nature (London) 246:466CrossRefGoogle Scholar
  47. 47.
    Huber KP, Herzberg G (2005) Constants of diatomic molecules (data prepared by Gallagher JW, Johnson RD, III) In: Linstrom PJ, Mallard WG (eds) NIST Chemistry WebBook, NIST standard reference database number 69. June 2005, National Institute of Standards and Technology, Gaithersburg MD, 20899 (http:// webbook.nist.gov)Google Scholar
  48. 48.
    Carrington A, Howard BJ (1970). Mol Phys 18:225CrossRefGoogle Scholar
  49. 49.
    Zhao Y, Lynch BJ, Truhlar DG (2004). J Phys Chem 108:2715Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Stephen D. Williams
    • 1
  • Timothy J. Johnson
    • 2
  • Thomas P. Gibbons
    • 1
  • Christopher L. Kitchens
    • 1
  1. 1.A. R. Smith Department of ChemistryAppalachian State UniversityBooneUSA
  2. 2.Battelle Pacific Northwest National LaboratoryRichlandUSA

Personalised recommendations