Theoretical Chemistry Accounts

, Volume 117, Issue 1, pp 69–72

Acceleration of Correlation-corrected Vibrational Self-consistent Field Calculation Times for Large Polyatomic Molecules

Regular Article

Abstract

Acceleration of the correlation-corrected Vibrational self-consistent field (CC-VSCF) method for anharmonic calculations of vibrational states of polyatomic molecules is described. The acceleration assumes pairwise additive interactions between different normal modes, and employs orthogonality of the single-mode vibrational wavefunctions. This greatly reduces the effort in computing correlation effects between different vibrational modes, which is treated by second order perturbation theory in CC-VSCF. The acceleration can improve the scaling of the overall computational effort from N6 to N4, where N is the number of vibrational modes. Sample calculation times, using semi-empirical potential surfaces (PM3), are given for a series of glycine peptides. Large computational acceleration, and significant reduction of the scaling of the effort with system size, is found and discussed.

Keywords

Vibrational anharmonicity Vibrational states Normal modes Vibrational self-consistent field Correlation-corrected vibrational self-consistent field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wilson EB, Jr, Decius JC, Cross PC (1955, reprinted 1980) Molecular Vibrations. The theory of infrared and Raman vibrational spectra. Dover, New York.Google Scholar
  2. 2.
    Herzberg G (1945, reprinted 1991) Molecular spectra and molecular structure. vol. II. Infrared and Raman spectra of polyatomic molecules. Krieger Publishing Company, MalabarGoogle Scholar
  3. 3.
    Gwinn WD (1971). J Chem Phys 55:477–481CrossRefGoogle Scholar
  4. 4.
    Boatz JA, Gordon MS (1989). J Phys Chem 93:1819–1826CrossRefGoogle Scholar
  5. 5.
    Blum CE, Altona C, Oskam A (1977). Mol Phys 34:557–571CrossRefGoogle Scholar
  6. 6.
    Fogarasi G, Pulay P (1984). Ann Rev Phys Chem 35:191–213CrossRefGoogle Scholar
  7. 7.
    Scott AP, Radom L (1996). J Phys Chem 100:16502–16513CrossRefGoogle Scholar
  8. 8.
    Halls MD, Velkovski J, Schlegel HB (2001). Theor Chem Acc 105:413–421CrossRefGoogle Scholar
  9. 9.
    Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004). J Phys Chem A 108:9213–9217CrossRefGoogle Scholar
  10. 10.
    Brooks B, Karplus M (1983). Proc Natl Acad Sci USA 80:6571–6575CrossRefGoogle Scholar
  11. 11.
    Oomens J, Polfer N, Moore DT, van der Meer L, Marshall AG, Eyler JR, Meijer G, von Helden G (2005). Phys Chem Chem Phys 7:1345–1348CrossRefGoogle Scholar
  12. 12.
    Chaban GM, Jung JO, Gerber RB (1999). J Chem Phys 111:1823–1829CrossRefGoogle Scholar
  13. 13.
    Jung JO, Gerber RB (1996). J Chem Phys 105:10332–10348CrossRefGoogle Scholar
  14. 14.
    Matsunaga N, Chaban GM, Gerber RB (2002). J Chem Phys 117:3541–3547CrossRefGoogle Scholar
  15. 15.
    Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JJ, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993). J Comput Chem 14:1347–1363CrossRefGoogle Scholar
  16. 16.
    http://www.msg.ameslab.gov/GAMESS/GAMESS.htmlGoogle Scholar
  17. 17.
    Werner H-J, Knowels PJ et al (2002) MOLPRO version 2002.6, a package of ab initio programs, BirminghamGoogle Scholar
  18. 18.
    Rauhut G (2004). J Chem Phys 121:9313–9322CrossRefGoogle Scholar
  19. 19.
    Barone V (2005). J Chem Phys 122:014108CrossRefGoogle Scholar
  20. 20.
    Frisch MJ et al (2003). Gaussian 03, revision, A.1, Gaussian Inc., Pittsburgh,Google Scholar
  21. 21.
    Gerber RB, Chaban GM, Brauer B, Miller Y (2005) In:Dykstra CE, Frenking G, Kim K, Suseria G, (eds) Theory and applications of computational chemistry: the first 40 years, Chapter 9, pp 165–193Google Scholar
  22. 22.
    Roitberg AE, Gerber RB, Elber R, Ratner MA (1995). Science 268:1319–1322CrossRefGoogle Scholar
  23. 23.
    Benoit DM (2004). J Chem Phys 120:562–573CrossRefGoogle Scholar
  24. 24.
    Yagi K, Taketsugu T, Hirao K, Gordon MS (2000). J Chem Phys 113:1005–1017CrossRefGoogle Scholar
  25. 25.
    Yagi K, Hirao K, Taketsugu T, Schmidt MW, Gordon MS (2004). J Chem Phys 121:1383–1389CrossRefGoogle Scholar
  26. 26.
    Norris LS, Ratner MA, Roitberg AE, Gerber RB (1996). J Chem Phys 105:11261–11267CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Physical Chemistry and Fritz Haber Research CenterThe Hebrew University of JerusalemJerusalemIsrael
  2. 2.Department of ChemistryUniversity of CaliforniaIrvineUSA

Personalised recommendations