Advertisement

Theoretical Chemistry Accounts

, Volume 115, Issue 5, pp 370–378 | Cite as

Information Theory, the Shape Function, and the Hirshfeld Atom

  • Paul W. AyersEmail author
Regular Article

Abstract

Following the work of Nalewajski and Parr, there has been a surge of interest in the use of information theory to describe chemical bonding and chemical reactions. However, the measure of “information” used by Nalewajski and Parr is not any of the usual conventional entropies, chiefly because the electron density is not normalized to one. The consequences of this are discussed, and a solution is constructed using the shape function and an “entropy of mixing” term. The same revision, however, cannot be made when if the Tsallis entropy, instead of the Shannon form, is used. This serves to emphasize that the Hirshfeld atom is a very specific result, associated only with logarithmic measures of information. A less specific derivation due to Nalewajski provides one resolution to this quandary; this derivation is analyzed in detail.

Keywords

Entropy Shape Function Chem Phys Fisher Information Directed Divergence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hirshfeld FL (1977). Theor Chim Acc 44:129CrossRefGoogle Scholar
  2. 2.
    Nalewajski RF (2003). J Phys Chem A 107:3792CrossRefGoogle Scholar
  3. 3.
    De Proft F, Vivas-Reyes R, Peeters A, Van Alsenoy C, Geerlings P (2003). J Comp Chem 24:463CrossRefGoogle Scholar
  4. 4.
    Roy RK (2003). J Phys Chem A 107:397CrossRefGoogle Scholar
  5. 5.
    Nalewajski RF, Switka E (2002). Phys Chem Chem Phys 4:4952CrossRefGoogle Scholar
  6. 6.
    Bultinck P, Langenaeker W, Lahorte P et al. (2002). J Phys Chem A 106:7895CrossRefGoogle Scholar
  7. 7.
    De Proft F, Van Alsenoy C, Peeters A, Langenaeker W, Geerlings P (2002). J Comp Chem 23:1198CrossRefGoogle Scholar
  8. 8.
    Ayers PW, Morrison RC, Roy RK (2002). J Chem Phys 116:8731CrossRefGoogle Scholar
  9. 9.
    Olah J, Van Alsenoy C, Sannigrahi AB (2002). J Phys Chem A 106:3885CrossRefGoogle Scholar
  10. 10.
    Ayers PW (2000). J Chem Phys 113:10886CrossRefGoogle Scholar
  11. 11.
    Roy RK, Hirao K, Pal S (2000). J Chem Phys 113:1372CrossRefGoogle Scholar
  12. 12.
    Roy RK, Pal S, Hirao K (1999). J Chem Phys 110:8236CrossRefGoogle Scholar
  13. 13.
    Nalewajski RF, Broniatowska E (2003). Chem Phys Lett 376:33CrossRefGoogle Scholar
  14. 14.
    Nalewajski RF (2003). Chem Phys Lett 372:28CrossRefGoogle Scholar
  15. 15.
    Nalewajski RF (2002). Phys Chem Chem Phys 4:1710CrossRefGoogle Scholar
  16. 16.
    Nalewajski RF, Switka E, Michalak A (2002). Int J Quantum Chem 87:198CrossRefGoogle Scholar
  17. 17.
    Nalewajski RF, Parr RG (2001). J Phys Chem A 105:7391CrossRefGoogle Scholar
  18. 18.
    Nalewajski RF, Loska R (2001). Theor Chem Acc 105:374Google Scholar
  19. 19.
    Nalewajski RF (2000). J Phys Chem A 104:11940CrossRefGoogle Scholar
  20. 20.
    Davidson ER, Chakravorty S (1992). Theoretica Chimica Acta 83:319CrossRefGoogle Scholar
  21. 21.
    Nalewajski RF (2003). Molecular Phys 101:2369CrossRefGoogle Scholar
  22. 22.
    Nalewajski RF, Parr RG (2000). Proc Natl Acad Sci USA 97:8879CrossRefGoogle Scholar
  23. 23.
    Kullback S (1997). Information theory and statistics. Dover, MineolaGoogle Scholar
  24. 24.
    Khinchin AI (1957). Mathematical foundations of information theory. Dover, New YorkGoogle Scholar
  25. 25.
    Zucker R (1965). In: Abramowitz M, Stegun IA (eds). Handbook of mathematical functions. Dover, New York, p 65Google Scholar
  26. 26.
    Stuart A, Ord JK (1994). Kendall’s Advanced theory of statistics, vol 1. Distribution theory. Halsted, New YorkGoogle Scholar
  27. 27.
    Abe S, Rajagopal AK (2003). Science 300:249CrossRefGoogle Scholar
  28. 28.
    Vives E, Planes A (2002). Phys Rev Lett 8802:art-020601Google Scholar
  29. 29.
    Yamano T (2001). Phys Rev E 6304:art-046105Google Scholar
  30. 30.
    Rajagopal AK, Abe S (1999). Phys Rev Lett 83:1711CrossRefGoogle Scholar
  31. 31.
    Tsallis C (1988). J Stat Phys 52:479CrossRefGoogle Scholar
  32. 32.
    Ayers PW (2000). J Chem Phys 113:10886CrossRefGoogle Scholar
  33. 33.
    Ayers PW (2000). Proc Natl Acad Sci USA 97:1959CrossRefGoogle Scholar
  34. 34.
    Parr RG, Bartolotti LJ (1983). J Phys Chem 87:2810CrossRefGoogle Scholar
  35. 35.
    Parr RG, Ayers PW, Nalewajski RF (2005). J Phys Chem A 109:3957CrossRefGoogle Scholar
  36. 36.
    Sears SB, Parr RG, Dinur U (1980). Isr J Chem 19:165Google Scholar
  37. 37.
    Bader RFW (1990). Atoms in molecules: a quantum theory. Clarendon, OxfordGoogle Scholar
  38. 38.
    Bader RFW, Tal Y, Anderson SG, Nguyen-Dang TT (1980). Isr J Chem 19:8Google Scholar
  39. 39.
    Gelfand IM, Fomin SV (1991). Calculus of variations. Dover, MineolaGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of ChemistryMcMaster UniversityHamiltonCanada

Personalised recommendations