Theoretical Chemistry Accounts

, Volume 114, Issue 4–5, pp 309–317

Ab initio study of the O2 binding in dicopper complexes



The structures and stabilities of [Cu2(μ-η2:η2- peroxo)]2+ (A) and [Cu2(μ-oxo)]2+ (B) complexes with three NH3 ligands per copper are investigated using DFT and high-level ab initio methods. These are model systems for active centers in enzymes like hemocyanine and tyrosinase. Previous studies have shown that at the DFT/B3LYP level the peroxo form A is more stable than the μ-oxo form B, while the opposite was found using CASPT2 (Flock M, Pierloot K (1999) J Phys Chem 103:95). At the two computational levels, the energy difference of the isomers differed by more than 30 kcal/mol. In this work this problem is reinvestigated using a localized orbital description and multireference configuration interaction (MRCI) methods. It is found that CASPT2 strongly over-corrects the correlation effect and MRCI predicts structure A to be energetically lower than B, in qualitative agreement with B3LYP and experiment. However, B3LYP seems to stabilize the biradicalic structure A too much, and this effect depends approximately linearly on the amount of exact exchange in the B3LYP density functional. Reducing the amount of exact exchange to 10–15% yields good agreement between MRCI and B3LYP.


[Cu2(μ-η2:η2- peroxo)]2+ [Cu2(μ-oxo)]2+ dicopper-oxygen complexes oxygen activation ab initio calculations DFT CASPT2 MRCI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Micica LM, Ottenwaelder X, Stack TDP (2004) Chem Rev 104:1013Google Scholar
  2. 2.
    Siegbahn PEM (2003) Faraday Discuss. 124:289Google Scholar
  3. 3.
    Siegbahn PEM, Blomberg MRA (1999) Ann Rev Phys Chem 50:221Google Scholar
  4. 4.
    Bernadi F, Bottoni A, Casadia R, Fariselli P, Rigo A (1996) Inorg Chem 35:5207Google Scholar
  5. 5.
    Cramer CJ, Smith BA, Tolman WB (1996) J Am Chem Soc 118:11283Google Scholar
  6. 6.
    Bérces A (1997) Int J Quantum Chem 65:1077Google Scholar
  7. 7.
    Bérces A (1997) Inorg Chem 36:4831Google Scholar
  8. 8.
    Flock M, Pierloot K (1999) J Phys Chem A 103:95Google Scholar
  9. 9.
    Lam BMT, Halfen JA Jr, Young VG, Hagadorn JR, Holland PL, LLedos A, Cucurull-Sanchez L, Novoda JJ, Alvarez S, Tolman WB (2000) Inorg Chem 39:4059Google Scholar
  10. 10.
    Metz M, Solomon EI (2001) J Am Chem Soc 123:4938Google Scholar
  11. 11.
    Becke AD (1993) J Chem Phys 98:5648Google Scholar
  12. 12.
    Volbeda A, Hol WG (1989) J Mol Biol 209:249Google Scholar
  13. 13.
    Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WG (1994) J Proteins 19:302Google Scholar
  14. 14.
    Werner H-J, Knowles PJ (1988) J Chem Phys 89:5803Google Scholar
  15. 15.
    Knowles PJ, Werner H-J (1988) Chem Phys Lett 145:514Google Scholar
  16. 16.
    Gdanitz RJ, Ahlrichs R (1988) Chem Phys Lett 143:413Google Scholar
  17. 17.
    Werner H-J, Knowles PJ (1990) Theor Chim Acta 78:175Google Scholar
  18. 18.
    Langhoff SR, Davidson ER (1974) Int J Quantum Chem 8:61Google Scholar
  19. 19.
    Davidson ER (1974) In: Daudel R, Pullman B (eds) The world of quantum chemistry, Reidel, DordrechtGoogle Scholar
  20. 20.
    Taylor PR (1992) Accurate calculations and calibration. In: Roos BO (eds) Lecture notes in quantum chemistry, vol 58. Springer, Berlin Heidelberg New YorkGoogle Scholar
  21. 21.
    Knowles PJ, Schütz M, Werner H-J (2000) Ab initio methods for electronic correlation in molecules. In: Johannes Grotendorst (eds) Modern methods and algorithms of quantum chemistry, vol 3. NIC-DirectorsGoogle Scholar
  22. 22.
    Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227Google Scholar
  23. 23.
    Peterson KA, Puzzarini C (2005) Theor Chem Acc (in press)Google Scholar
  24. 24.
    Dunning TH Jr (1989) J Chem Phys 90:1007 (currently online, DOI: 10.1007/s00214-005-0689-9)Google Scholar
  25. 25.
    Kendall RA, Dunning TH Jr, Harrison RH (1992) J Chem Phys 96:6796Google Scholar
  26. 26.
    MOLPRO is a package of ab initio programs designed by Werner H-J, Knowles PJ, written with contributions from Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J, see
  27. 27.
    Werner H-J (1996) Mol Phys 89:645Google Scholar
  28. 28.
    Celani P, Werner H-J (2000) J Chem Phys 112:5546Google Scholar
  29. 29.
    Werner H-J, Knowles PJ (1985) J Chem Phys 82:5053Google Scholar
  30. 30.
    Knowles PJ, Werner H-J (1985) Chem Phys Lett 115:259Google Scholar
  31. 31.
    Celani P, Stoll H, Werner H-J (1004) Mol Phys 102:2369Google Scholar
  32. 32.
    Pipek J, Mezey PG (1989) J Chem Phys 90:4916Google Scholar
  33. 33.
    Stoll H (1992) Phys Rev B 46:6700Google Scholar
  34. 34.
    Stoll H (1992) J Chem Phys 97:8449Google Scholar
  35. 35.
    Stoll H (1992) Chem Phys Lett 191:548Google Scholar
  36. 36.
    Kalvoda S, Paulus B, Dolg M, Stoll H, Werner H-J (2001) Phys Chem Chem Phys 3:514Google Scholar
  37. 37.
    Andersson K (1995) Theor Chim Acta 91:31Google Scholar
  38. 38.
    Becke AD (1988) Phys Rev A 38:3098Google Scholar
  39. 39.
    Reiher M, Salomon O, Hess BA (2001) Theor Chem Acc 107:48Google Scholar
  40. 40.
    Wong MW, Steudel R (2005) Chem Comm 29:3712Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Institut für Theoretische ChemieUniversität StuttgartStuttgartGermany

Personalised recommendations