Theoretical Chemistry Accounts

, Volume 114, Issue 4–5, pp 283–296 | Cite as

Systematically convergent basis sets for transition metals. II. Pseudopotential-based correlation consistent basis sets for the group 11 (Cu, Ag, Au) and 12 (Zn, Cd, Hg) elements



Sequences of basis sets that systematically converge towards the complete basis set (CBS) limit have been developed for the coinage metals (Cu, Ag, Au) and group 12 elements (Zn, Cd, Hg). These basis sets are based on recently published small-core relativistic pseudopotentials [Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227] and range in size from double- through quintuple-ζ. Series of basis sets designed for valence-only and outer-core electron correlation are presented, as well as these sets augmented by additional diffuse functions for the accurate description of negative ions and weak interactions. Selected benchmark calculations at the coupled cluster level of theory are presented for both atomic and molecular properties. The latter include the calculation of both spectroscopic and thermochemical properties of the homonuclear dimers Cu2, Ag2, and Au2, as well as the van der Waals species Zn2, Cd2, and Hg2. The CBS limit results, including the effects of core-valence correlation and spin-orbit coupling, represent some of the most accurate carried out to date and result in new recommendations for the equilibrium bond lengths of the group 12 dimers. Comparisons are also made to a limited number of all-electron Douglas–Kroll–Hess (DKH) calculations (second and third order) carried out using new correlation consistent basis sets of triple-ζ quality.


Basis sets Correlation Consistent Transition metal dimers Complete basis set Coupled cluster 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almlöf J, Taylor PR (1987) J Chem Phys 86:4070Google Scholar
  2. 2.
    Dunning TH, Jr. (1989) J Chem Phys 90:1007–1023Google Scholar
  3. 3.
    Dunning TH, Jr. (2000) J Phys Chem A 104:9062–9080Google Scholar
  4. 4.
    Feller D, Peterson KA, de Jong WA, Dixon DA (2003) J Chem Phys 118:3510–3522Google Scholar
  5. 5.
    Balabanov NB, Peterson KA (2003) J Phys Chem A 107:7465–7470Google Scholar
  6. 6.
    Boese AD, Oren M, Atasoylu O, Martin JML (2004) J Chem Phys 120:4129–4141Google Scholar
  7. 7.
    Schuurman MS, Muir SR, Allen WD, Schaefer HF, III (2004) J Chem Phys 120:11586–11599Google Scholar
  8. 8.
    Peterson KA (2003) J Chem Phys 119:11099–11112Google Scholar
  9. 9.
    Peterson KA, Figgen D, Goll E, Stoll H, Dolg M (2003) J Chem Phys 119:11113–11123Google Scholar
  10. 10.
    Bauschlicher CW, Jr. (1999) Theor Chem Acc 103:141–145Google Scholar
  11. 11.
    Ricca A, Bauschlicher CW, Jr. (2001) Theor Chem Acc 106:314–318Google Scholar
  12. 12.
    Balabanov NB, Peterson KA J Chem Phys (in press)Google Scholar
  13. 13.
    Osanai Y, Sekiya M, Noro T, Koga T (2003) Mol Phys 101:65–71Google Scholar
  14. 14.
    Dyall KG (2004) Theor Chem Acc 112:403–409Google Scholar
  15. 15.
    Dobbs KD, Hehre WJ (1987) J Comp Chem 8:880–893Google Scholar
  16. 16.
    Walch SP, Bauschlicher CW, Jr., Nelin CJ (1983) J Chem Phys 79:3600–3602Google Scholar
  17. 17.
    Kellö V, Sadlej AJ (1996) Theor Chim Acta 94:93–104Google Scholar
  18. 18.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283Google Scholar
  19. 19.
    Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310Google Scholar
  20. 20.
    LaJohn LA, Christiansen PA, Ross RB, Atashroo T, Ermler WC (1987) J Chem Phys 87:2812–2824Google Scholar
  21. 21.
    Stevens WJ, Krauss M, Basch H, Jasien PG (1992) Can J Chem 70:612–630Google Scholar
  22. 22.
    Ross RB, Powers JM, Atashroo T, Ermler WC, LaJohn LA, Christiansen PA (1990) J Chem Phys 93:6654–6670Google Scholar
  23. 23.
    Andrae D, Häussermann U, Dolg M, Stoll H, Preuss H (1990) Theor Chim Acta 77:123–141Google Scholar
  24. 24.
    Metz B, Schweizer M, Stoll H, Dolg M, Liu W (2000) Theor Chem Acc 104:22–28Google Scholar
  25. 25.
    Metz B, Stoll H, Dolg M (2000) J Chem Phys 113:2563–2569Google Scholar
  26. 26.
    Figgen D, Rauhut G, Dolg M, Stoll H (2005) Chem Phys 311:227–244Google Scholar
  27. 27.
    Tsuchiya T, Abe M, Nakajima T, Hirao K (2001) J Chem Phys 115:4463–4472Google Scholar
  28. 28.
    Nakajima T, Hirao K (2002) J Chem Phys 116:8270–8275Google Scholar
  29. 29.
    Douglas M, Kroll NM (1974) Ann Phys (New York) 82:89–155Google Scholar
  30. 30.
    Jansen G, Hess BA (1989) Phys Rev A 39:6016–6017Google Scholar
  31. 31.
    Peterson KA (2005) In: Wilson AK, Peterson KA (eds) Recent advances in electron correlation methodology. ACSGoogle Scholar
  32. 32.
    Häussermann U, Dolg M, Stoll H, Preuss H, Schwerdtfeger P, Pitzer RM (1993) Mol Phys 78:1211–1224Google Scholar
  33. 33.
    Peterson KA, Figgen D, Stoll H, Dolg M (to be published)Google Scholar
  34. 34.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipies in FORTRAN: the art of scientific computing, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    MOLPRO, a package of ab initio programs designed by Werner H-J, Knowles PJ, version 2002.6, Amos RD, Bernhardsson A, Berning A, Celani P, Cooper DL, Deegan MJO, Dobbyn AJ, Eckert F, Hampel C, Hetzer G, Knowles PJ, Korona T, Lindh R, Lloyd AW, McNicholas SJ, Manby FR, Meyer W, Mura ME, Nicklass A, Palmieri P, Pitzer R, Rauhut G, Schütz M, Schumann U, Stoll H, Stone AJ, Tarroni R, Thorsteinsson T, Werner H-J (2002)Google Scholar
  36. 36.
    Blaudeau J-P, Brozell SR, Matsika S, Zhang Z, Pitzer RM (2000) Int J Quantum Chem 77:516–520Google Scholar
  37. 37.
    Christiansen PA (2000) J Chem Phys 112:10070–10074Google Scholar
  38. 38.
    Ruedenberg K, Raffenetti RC, Bardo RD (1973) ``Energy, structure and reactivity, Proceedings of the 1972 Boulder conference on theoretical chemistry'', Wiley, New YorkGoogle Scholar
  39. 39.
    Feller DF, Ruedenberg K (1979) Theor Chim Acta 52:231–251Google Scholar
  40. 40.
    Martin JML, Sundermann A (2001) J Chem Phys 114:3408–3420Google Scholar
  41. 41.
    Dolg M, Wedig U, Stoll H, Preuss H (1987) J Chem Phys 86:866–872Google Scholar
  42. 42.
    Peterson KA, Dunning TH, Jr. (2002) J Chem Phys 117:10548–10560Google Scholar
  43. 43.
    Petersson GA, Zhong S, Montgomery JA, Jr., Frisch MJ (2003) J Chem Phys 118:1101–1109Google Scholar
  44. 44.
    Partridge H, Faegri K, Jr. (1992) Theor Chim Acta 82:207–212Google Scholar
  45. 45.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479–483Google Scholar
  46. 46.
    Hampel C, Peterson KA, Werner H-J (1992) Chem Phys Lett 190:1–12Google Scholar
  47. 47.
    Rittby M, Bartlett RJ (1988) J Phys Chem 92:3033–3036Google Scholar
  48. 48.
    Scuseria GE (1991) Chem Phys Lett 176:27–35Google Scholar
  49. 49.
    Knowles PJ, Hampel C, Werner H-J (1994) J Chem Phys 99:5219–5227Google Scholar
  50. 50.
    Knowles PJ, Hampel C, Werner H-J (2000) J Chem Phys 112:3106–3107Google Scholar
  51. 51.
    Dunham JL (1932) Phys Rev 41:721Google Scholar
  52. 52.
    Boys SF, Bernardi F (1970) Mol Phys 19:553Google Scholar
  53. 53.
    Woon DE, Dunning TH, Jr. (1994) J Chem Phys 100:2975Google Scholar
  54. 54.
    COLUMBUS, an ab initio electronic structure program, release 5.8 (2001); Lischka H, Shepard R, Shavitt I, Pitzer RM, Dallos M, Müller Th, Szalay PG, Brown FB, Ahlrichs R, Böhm HJ, Chang A, Comeau DC, Gdanitz R, Dachsel H, Ehrhardt C, Ernzerhof M, Höchtl P, Irle S, Kedziora G, Kovar T, Parasuk V, Pepper MJM, Scharf P, Schiffer H, Schindler M, Schüler M, Seth M, Stahlberg EA, Zhao J-G, Yabushita S, Zhang Z (2001)Google Scholar
  55. 55.
    Yabushita S, Zhang Z, Pitzer RM (1999) J Phys Chem A 103:5791–5800Google Scholar
  56. 56.
    Nakajima T, Hirao K (2000) J Chem Phys 113:7786–7789Google Scholar
  57. 57.
    Nakajima T, Hirao K (2003) J Chem Phys 119:4105–4111Google Scholar
  58. 58.
    Yanai T, Iikura H, Nakajima T, Ishikawa Y, Hirao K (2001) J Chem Phys 115:8267–8273Google Scholar
  59. 59.
    UTChem [2004 β]: Yanai T, Kamiya M, Kawashima Y, Nakajima T, Nakano H, Nakao Y, Sekino H, Paulovic J, Tsuneda T, Yanagisawa S, Hirao K (2004)Google Scholar
  60. 60.
    Helgaker T, Klopper W, Koch H, Noga J (1997) J Chem Phys 106:9639–9645Google Scholar
  61. 61.
    Halkier A, Helgaker T, JØrgensen P, Klopper W, Koch H, Olsen J, Wilson AK (1998) Chem Phys Lett 286:243–252Google Scholar
  62. 62.
    Peterson KA, Woon DE, Dunning TH, Jr. (1994) J Chem Phys 100:7410–7415Google Scholar
  63. 63.
    Dixon DA, de Jong WA, Peterson KA, McMahon TB (2005) J Phys Chem A 109:4073–4080Google Scholar
  64. 64.
    Hess BA, Kaldor U (2000) J Chem Phys 112:1809–1813Google Scholar
  65. 65.
    Fleig T, Visscher L (2005) Chem Phys 311:113–120Google Scholar
  66. 66.
    Ran Q, Schmude RWJ, Gingerich KA, Wilhite DW, Kingcade JEJ (1993) J Phys Chem 97:8535–8540Google Scholar
  67. 67.
    van Lenthe E, Snijders JG, Baerends EJ (1996) J Chem Phys 105:6505Google Scholar
  68. 68.
    Lee H-S, Han Y-K, Kim MC, Bae C, Lee YS (1998) Chem Phys Lett 293:97–102Google Scholar
  69. 69.
    Shepler BC, Peterson KA (2003) J Phys Chem A 107:1783–1787Google Scholar
  70. 70.
    Balabanov NB, Peterson KA (2003) J Chem Phys 119:12271–12278Google Scholar
  71. 71.
    Puzzarini C, Peterson KA (2005) Chem Phys 311:177–186Google Scholar
  72. 72.
    Yu M, Dolg M (1997) Chem Phys Lett 273:329–336Google Scholar
  73. 73.
    Czajkowski MA, Koperski J (1999) Spectrochim Acta A 55:2221–2229Google Scholar
  74. 74.
    Ceccherini S, Moraldi M (2001) Chem Phys Lett 337:386–390Google Scholar
  75. 75.
    Ellingsen K, Saue T, Pouchan C, Gropen O (2005) Chem Phys 311:35–44Google Scholar
  76. 76.
    Zehnacker A, Duval MC, Jouvet C, C. L-D, Solgadi D, Soep B, D`Azy OB (1987) J Chem Phys 86:6565–6566Google Scholar
  77. 77.
    van Zee RD, Blankkespoor SC, Zwier TS (1988) J Chem Phys 88:4650–4654Google Scholar
  78. 78.
    Koperski J, Atkinson JB, Krause L (1994) Chem Phys Lett 219:161–168Google Scholar
  79. 79.
    Koperski J, Atkinson JB, Krause L (1994) Can J Phys 72:1070–1077Google Scholar
  80. 80.
    Koperski J, Atkinson JB, Krause L (1997) J Mol Spectrosc 184:300–308Google Scholar
  81. 81.
    Schwerdtfeger P, Wesendrup R, Moyano GE, Sadlej AJ, Greif J, Hensel F (2001) J Chem Phys 115:7401–7412Google Scholar
  82. 82.
    Schwerdtfeger P, Li J, Pyykkö P (1994) Theor Chim Acta 87:313–320Google Scholar
  83. 83.
    Munro LJ, Johnson JK, Jordan KD (2001) J Chem Phys 114:5545–5551Google Scholar
  84. 84.
    Dolg M, Flad H-J (1996) J Phys Chem 100:6147–6151Google Scholar
  85. 85.
    Wesendrup R, Kloo L, Schwerdtfeger P (2000) Int J Mass Spectrom 201:17–21Google Scholar
  86. 86.
    Kunz CF, Hättig C, Hess BA (1996) Mol Phys 89:139–156Google Scholar
  87. 87.
  88. 88.
    Moore CE (1971) Atomic energy levels, NSRDS-NBS 35, Office of Standard Reference Data, National Bureau of Standards, Washington, DCGoogle Scholar
  89. 89.
    Andersen T, Haugen HK, Hotop H (1999) J Phys Chem Ref Data 28:1511–1533Google Scholar
  90. 90.
    Loock H-P, Beaty LM, Simard B (1999) Phys Rev A 59:873–875Google Scholar
  91. 91.
    Ram RS, Jarman CN, Bernath PF (1992) J Mol Spectrosc 156:468–486Google Scholar
  92. 92.
    Rohlfing EA, Valentini JJ (1986) J Chem Phys 84:6560–6566Google Scholar
  93. 93.
    Kraemer H-G, Beutel V, Weyers K, Demtroeder W (1992) Chem Phys Lett 193:331–334Google Scholar
  94. 94.
    Huber KP, Herzberg G (1979) Molecular spectra and molecular structure IV. Constants of Diatomic molecules, Van Nostrand, Princeton, USAGoogle Scholar
  95. 95.
    Simard B, Hackett PA (1994) J Mol Spectrosc 168:310–318Google Scholar
  96. 96.
    James AM, Kowalczyk P, Simard B, Pinegar JC, Morse MD (1994) J Mol Spectrosc 168:248–257Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  1. 1.Department of ChemistryWashington State UniversityWashington
  2. 2.Dipartimento di Chimica “G. Ciamician”Universitá di BolognaBolognaItaly

Personalised recommendations