Theoretical Chemistry Accounts

, Volume 114, Issue 1–3, pp 68–75 | Cite as

DFT ×TB − a unified quantum-mechanical hybrid method

Article

Abstract

A unified quantum mechanical hybrid method on the basis of density functional theory (DFT) is presented. The method is based on an LCAO-Kohn-Sham ansatz. While a part is treated with standard DFT, for the remaining system non-orthogonal tight-binding (TB) approximations are made for potential and basis functions. This means that it is possible to have covalent bonds in between the DFT and TB parts. The charge fluctuation within the system is controlled by the self-consistent charge technique. Theory, implementation, and first example molecules are presented in this article, and further development is discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Warshel A, Levitt M (1976) J Mol Biol 103:227Google Scholar
  2. 2.
    Sierka M, Sauer J (2000) J Chem Phys 112:6983Google Scholar
  3. 3.
    Maseras F, Morokuma K (1995) J Comput Chem 16:1170Google Scholar
  4. 4.
    Kerdcharoen T, Birkenheuer U, Krüger S, Woiterski A, Rösch N (2003) Theor Chem Acc 109:285Google Scholar
  5. 5.
    Humbel S, Sieber S, Morokuma K (1996) J Chem Phys 105:1959Google Scholar
  6. 6.
    Svensson M, Humbel S, Froese RDJ, Matsubara T, Sieber S, Morokuma K (1996) J Phys Chem 100:19357Google Scholar
  7. 7.
    Hinton JF, Guthrie PL, Pulay P, Wolinsky K (1993) J Magn Res A 103:188Google Scholar
  8. 8.
    Shluger AL, Gale JD (1996) Phys Rev B 54:962Google Scholar
  9. 9.
    Zhang YK, Lee TS, Yang WT (1999) J Chem Phys 110:46Google Scholar
  10. 10.
    Sauer J, Sierka M (2000) J Comput Chem 21:1470Google Scholar
  11. 11.
    Frauenheim T, Seifert G, Elstner M, Niehaus T, Köhler C, Amkreutz M, Sternberg M, Hajnal Z, Di Aldo C, Suhai S (2002) J Phys Cond Matter 14:3015Google Scholar
  12. 12.
    Köster AM, Flores-Moreno R, Reveles JU (2004) J Chem Phys 121:681Google Scholar
  13. 13.
    Seifert G, Eschrig H, Bieger W (1986) Z Phys Chem Leizig 267:529Google Scholar
  14. 14.
    Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R (1995) Phys Rev B 51:12947Google Scholar
  15. 15.
    Seifert G, Porezag D, Frauenheim T (1996) Int J Quant Chem 58:185Google Scholar
  16. 16.
    Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim T, Suhai S, Seifert G (1998) Phys Rev B 58:7260Google Scholar
  17. 17.
    Eschrig H, Bergert I (1978) Phys Stat Sol B 90:621Google Scholar
  18. 18.
    Mineva T, Heine T (2004) J Phys Chem A 118:11086Google Scholar
  19. 19.
    Mineva T, Heine T (2005) Int J Quantum Chem (in press)Google Scholar
  20. 20.
    Köster AM, Flores R, Geudtner G, Goursot A, Heine T, Patchkovskii S, Reveles UR, Vela A, Salahub DR (2004) deMon, CNRS Ottawa, CanadaGoogle Scholar
  21. 21.
    This transformation can be applied also for pure DFT computations and is activated by the GENAO option.Google Scholar
  22. 22.
    Köster AM, Calaminici P, Gómez Z, Reveles UR (2002) In: Sen K. (ed) Reviews of modern quantum chemistry, a celebration of the contribution of Robert G. Parr. World Scientific Publishing, SingaporeGoogle Scholar
  23. 23.
    Köster AM (2003) J Chem Phys 118:9943Google Scholar
  24. 24.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865Google Scholar
  25. 25.
    Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Phys 70:560Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Hélio A. Duarte
    • 1
  • Thomas Heine
    • 2
  • Gotthard Seifert
    • 2
  1. 1.Departamento de Química-ICExUniversidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Institut für Physikalische Chemie und ElektrochemieTU DresdenDresdenGermany

Personalised recommendations