Theoretical Chemistry Accounts

, Volume 115, Issue 5, pp 391–397 | Cite as

Direct calculation of Henry’s law constants from Gibbs ensemble Monte Carlo simulations: nitrogen, oxygen, carbon dioxide and methane in ethanol

Regular Article

Abstract

Configurational-bias Monte Carlo simulations in the Gibbs ensemble were used to calculate Henry’s law constants, Ostwald solubilities, and Gibbs free energies of transfer for oxygen, nitrogen, methane, and carbon dioxide in ethanol at 323 and 373 K. These three solubility descriptors can be expressed as functions of mechanical properties that are directly observable in the Gibbs ensemble approach, thereby allowing for very precise determination of the descriptors. Additionally, the Henry’s law constants of multiple solutes can be computed from a single simulation. Most of the simulations were carried out for systems containing 1,000 solvent and up to 8 solute molecules, and further simulations using either 500 or 2,000 solvent molecules point to negligible system size effects. A comparison with experimental data shows that the united-atom version of the transferable potential for phase equilibria force field yields Henry’s law constants that reproduce well the differences between the four solutes and the changes upon increase of the temperature.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Prausnitz JM, Lichtenthaler RN, Azevedo EGD (1986) Molecular thermodynamics of fluid phase equilibria. Englewood Cliffs, Prentice HallGoogle Scholar
  2. 2.
    Sandler SI (1989) Chemical and engineering thermodynamics. New York, WileyGoogle Scholar
  3. 3.
    Shing KS, Gubbins KE, Lucas K (1988). Mol Phys 65:1235CrossRefGoogle Scholar
  4. 4.
    Jorgensen WL (1989). Acc Chem Res 22:184CrossRefGoogle Scholar
  5. 5.
    Kollman PA (1996). Acc Chem Res 29:461CrossRefGoogle Scholar
  6. 6.
    Widom B (1963). J Chem Phys 39:2808CrossRefGoogle Scholar
  7. 7.
    Widom B (1982). J Phys Chem 86:869CrossRefGoogle Scholar
  8. 8.
    Sindzingre P, Ciccotti G, Massobrio C, Frenkel D (1987). Chem Phys Lett 136:35CrossRefGoogle Scholar
  9. 9.
    Kofke DA, Cummings PT (1997). Mol Phys 92:973CrossRefGoogle Scholar
  10. 10.
    Kofke DA (2004). Mol Phys 102:405CrossRefGoogle Scholar
  11. 11.
    Lyubartsev AP, Martsinovski AA, Shevkunov SV, Vorontsov-Velyaminov PN (1992). J Chem Phys 96:1776CrossRefGoogle Scholar
  12. 12.
    Cichowski EC, Schmidt TR, Errington JR (2005). Fluid Phase Equil 236:58CrossRefGoogle Scholar
  13. 13.
    Panagiotopoulos AZ (1987). Mol Phys 61:813CrossRefGoogle Scholar
  14. 14.
    Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988). Mol Phys 63:527CrossRefGoogle Scholar
  15. 15.
    Smit B, de Smedt P, Frenkel D (1989). Mol Phys 68:931CrossRefGoogle Scholar
  16. 16.
    Martin MG, Siepmann JI (1997). J Am Chem Soc 119:8921CrossRefGoogle Scholar
  17. 17.
    Martin MG, Siepmann JI (1998). Theo Chem Acc 99:347Google Scholar
  18. 18.
    Chen B, Siepmann JI (2000). J Am Chem Soc 122:6464CrossRefGoogle Scholar
  19. 19.
    Wick CD, Siepmann JI, Schure MR (2004). Anal Chem 76:2886CrossRefGoogle Scholar
  20. 20.
    Vlugt TJH, Martin MG, Smit B, Siepmann JI, Krishna R (1998). Mol Phys 94:727CrossRefGoogle Scholar
  21. 21.
    Martin MG, Siepmann JI (1998). J Phys Chem B 102:2569CrossRefGoogle Scholar
  22. 22.
    Siepmann JI, Frenkel D (1992). Mol Phys 75:59CrossRefGoogle Scholar
  23. 23.
    Martin MG, Siepmann JI (1999). J Phys Chem B 103:4508CrossRefGoogle Scholar
  24. 24.
    Esselink K, Loyens LDJC, Smit B (1995). Phys Rev E 51:1560CrossRefGoogle Scholar
  25. 25.
    Mackie AD, Tavitian B, Boutin A, Fuchs AH (1997). Mol Simul 19:1CrossRefGoogle Scholar
  26. 26.
    Chen B, Potoff JJ, Siepmann JI (2001). J Phys Chem B 105:3093CrossRefGoogle Scholar
  27. 27.
    http://www.chem.umn.edu/groups/siepmann/trappe/intro.phpGoogle Scholar
  28. 28.
    Chen B, Siepmann JI (1999). J Phys Chem B 103:5370CrossRefGoogle Scholar
  29. 29.
    Potoff JJ, Siepmann JI (2001). AIChE J 47:1676CrossRefGoogle Scholar
  30. 30.
    Allen MP, Tildesley DJ (1987). Computer simulation of liquids. Oxford University Press, OxfordGoogle Scholar
  31. 31.
    Wood WW, Parker FR (1957). J Chem Phys 27:720CrossRefGoogle Scholar
  32. 32.
    Friend DG, Frurip DJ, Lemmon EW, Morrison RE, Olson JD, Wilson LC (2005). Fluid Phase Equil 236:15CrossRefGoogle Scholar
  33. 33.
    Coon JE, Gupta S, McLaughlin E (1987). Chem Phys 113:43CrossRefGoogle Scholar
  34. 34.
    Wilhelm E, Battino R (1973). Chem Rev 73:1CrossRefGoogle Scholar
  35. 35.
    Katayama T, Nitta T (1976). J Chem Eng Data 21:194CrossRefGoogle Scholar
  36. 36.
    Bo S, Battino R, Wilhelm E (1993). J Chem Eng Data 38:611CrossRefGoogle Scholar
  37. 37.
    Fischer K, Wilken M (2001). J Chem Thermodyn 33:1285CrossRefGoogle Scholar
  38. 38.
    Ukai T, Kodama D, Miyazaki J, Kato M (2002). J Chem Eng Data 47:1320CrossRefGoogle Scholar
  39. 39.
    Suzuki K, Sue H, Itou M, Smith RL, Inomata H, Arai K, Saito S (1990). J Chem Eng Data 35:63CrossRefGoogle Scholar
  40. 40.
    Brunner E, Hultenschmidt W (1990). J Chem Thermodyn 22:73CrossRefGoogle Scholar
  41. 41.
    Kretschmer CB, Nowakowska J, Wiebe R (1946). Ind Eng Chem 38:506CrossRefGoogle Scholar
  42. 42.
    Wick CD, Siepmann JI, Schure MR (2003). J Phys Chem B 107:10623CrossRefGoogle Scholar
  43. 43.
    Siepmann JI, McDonald IR, Frenkel D (1992). J Phys Condens Matter 4:679CrossRefGoogle Scholar
  44. 44.
    Chen B, Siepmann JI (2005) J Phys Chem B, ASAP articleGoogle Scholar
  45. 45.
    Escobedo FA, de Pablo JJ (1996). J Chem Phys 105:4391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Departments of Chemistry and of Chemical Engineering and Materials ScienceUniversity of MinnesotaMinneapolisUSA

Personalised recommendations