Theoretical Chemistry Accounts

, Volume 116, Issue 1–3, pp 253–261 | Cite as

Valence Bond – Rebirth of the Phoenix or Relic from the Stone Age

Regular Article

Abstract

The valence bond (VB) method has enjoyed its prime time during the early stages in the field of quantum chemistry. After the advent of molecular orbital methods VB lost its popularity but continued to be improved and refined by a small community of scientists who appreciated its power of revealing insight into the origins of chemical reactivity. This review summarizes the developments of the VB theory in the past few decades by focusing on two major areas of research: studies of the reactivity of small chemical systems and discovering the origins of enzyme catalysis. In both cases the unique capabilities of VB that facilitated discoveries of new concepts in an elegant and seemingly effortless way are discussed. It is suggested that owing to the success of these discoveries VB methodology is once again steadily gaining momentum. It is believed that VB concepts will play a major role in the future of theoretical chemistry

Keywords

Valence bond Valence bond diagrams Reactivity studies Empirical valence bond Quantum mechanics molecular mechanics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    Heitler W, London F (1927). Z Phys 44:455CrossRefGoogle Scholar
  2. 2.
    London F (1928). Z Phys 46:455CrossRefGoogle Scholar
  3. 3.
    Rumer G (1932). Göttinger Nach :337Google Scholar
  4. 4.
    Pauling L (1939). The nature of the chemical bond. Cornell University Press, Ithaca, New YorkGoogle Scholar
  5. 5.
    Huckel E (1930). Z Phys 60:423CrossRefGoogle Scholar
  6. 6.
    Huckel E (1931). Z Phys 72:310CrossRefGoogle Scholar
  7. 7.
    Huckel E (1934). Trans Faraday Soc 30:40CrossRefGoogle Scholar
  8. 8.
    Dewar MJS (1952). J Am Chem Soc 74:3341CrossRefGoogle Scholar
  9. 9.
    Roothaan CCJ (1951). Rev Mod Phys 23:69CrossRefGoogle Scholar
  10. 10.
    Walsh AD (1953). J Chem Soc:2260CrossRefGoogle Scholar
  11. 11.
    Fukui K, Yonezawa T, Shingu H (1952). J Chem Phys 20:722CrossRefGoogle Scholar
  12. 12.
    Fukui K (1982). Science 218:747Google Scholar
  13. 13.
    Woodward RB, Hoffmann R (1969). Angew Chem Int Ed Engl 8:781CrossRefGoogle Scholar
  14. 14.
    Hoffmann R, Woodward RB (1968). Acc Chem Res 1:17CrossRefGoogle Scholar
  15. 15.
    Cooper DL, Gerratt J, Raimondi M (1991). Chem Rev 91:929CrossRefGoogle Scholar
  16. 16.
    Hoffmann R, Shaik S, Hiberty PC (2003). Acc Chem Res 36:750CrossRefPubMedGoogle Scholar
  17. 17.
    Roberts JD (2004). Acc Chem Res 37:417CrossRefPubMedGoogle Scholar
  18. 18.
    Streitwieser A (2004). Acc Chem Res 37:419CrossRefPubMedGoogle Scholar
  19. 19.
    Shaik S, Hiberty PC (2003). Helv Chim Acta 86:1063CrossRefGoogle Scholar
  20. 20.
    Shaik S, Hiberty PC (2004). Rev Comput Chem 20:1CrossRefGoogle Scholar
  21. 21.
    Evans MG, Polanyi M (1938). Trans Faraday Soc 34:11CrossRefGoogle Scholar
  22. 22.
    Truhlar DG, Wyatt RE (1977). Adv Chem Phys 36:141Google Scholar
  23. 23.
    Murrell JN, Carter S, Farantos SC, Huxley P, Varandas AJC (1984). Molecular potential energy functions. Wiley, New YorkGoogle Scholar
  24. 24.
    Coulson CA, Fischer I (1949). Phil Mag 40:386Google Scholar
  25. 25.
    Bobrowicz FW, Goddard WA III (1977). In: Schaefer HF III (ed). Methods of electronic structure theory, Vol 3. Plenum Press, New York, p 79Google Scholar
  26. 26.
    Hunt WJ, Hays PJ, Goddard WA, III (1972). J Chem Phys 57:738CrossRefGoogle Scholar
  27. 27.
    Goddard WA III, Harding LB (1978). Annu Rev Phys Chem 29:363CrossRefGoogle Scholar
  28. 28.
    Cooper DL, Gerratt J, Raimondi M (1988). Int Rev Phys Chem 7:59CrossRefGoogle Scholar
  29. 29.
    Hiberty PC, Flament JP, Noizet E (1992). Chem Phys Lett 189:259CrossRefGoogle Scholar
  30. 30.
    Carter EA, Goddard WA, III (1988). J Chem Phys 88:3132CrossRefGoogle Scholar
  31. 31.
    Hiberty PC, Leforestier C (1978). J Am Chem Soc 100:2012CrossRefGoogle Scholar
  32. 32.
    Bernardi F, Olivucci M, McDouall JJW, Robb MA (1988). J Chem Phys 89:6365CrossRefGoogle Scholar
  33. 33.
    Bernardi F, Celani P, Olivucci M, Robb MA, Suzzi-Valli G (1995). J Am Chem Soc 117:10531CrossRefGoogle Scholar
  34. 34.
    Blancafort L, Celani P, Bearpark MJ, Robb MA (2003). Theor Chem Acc 110:92Google Scholar
  35. 35.
    Thorsteinsson T, Cooper DL, Gerrat J, Karadakov PB, Raimondi M (1996). Theor Chim Acta (Berl). 93:343CrossRefGoogle Scholar
  36. 36.
    Cooper DL, Thorsteinsson T, Gerratt J (1997). Int J Quant Chem 65:439CrossRefGoogle Scholar
  37. 37.
    Hirao H, Nakano H, Nakayama K (1997). J Chem Phys 107:9966CrossRefGoogle Scholar
  38. 38.
    Nakano H, Sorakubo K, Nakayama K, Hirao H (2002). In: Cooper DL (ed). Valence bond theory, Elsevier, Amsterdam, p 55Google Scholar
  39. 39.
    van Lenthe JH, Balint-Kurti GG (1983). J Chem Phys 78:5699CrossRefGoogle Scholar
  40. 40.
    Hiberty PC, Humbel S, Byrman CP, van Lenthe JH (1994). J Chem Phys 101:5969CrossRefGoogle Scholar
  41. 41.
    Matsen FA (1964). Adv Quantum Chem 1:60Google Scholar
  42. 42.
    McWeeny R (1988). Int J Quantum Chem XXXIV:23Google Scholar
  43. 43.
    Wu W, Mo Y, Zhang Q (1993). J Mol Struct (THEOCHEM). 283:227CrossRefGoogle Scholar
  44. 44.
    Song L, Wu W, Mo Y, Zhang Q (2003). XMVB-0.1 – An ab initio non-orthogonal valence bond program. Xiamen University, Xiamen – ChinaGoogle Scholar
  45. 45.
    Song LC, Mo YR, Zhang QN, Wu W (2005). J comput Chem 26:514CrossRefPubMedGoogle Scholar
  46. 46.
    Verbeek J, van Lenthe JH, Pulay P (1991). Mol Phys 73:1159Google Scholar
  47. 47.
    Verbeek J, Langenberg JH, Byrman CP, Dijkstra F, van Lenthe JH (1998). TURTLE: an ab-initio VB/VBSCF program, (now implemented in Gamess).Google Scholar
  48. 48.
    Hiberty PC, Shaik S (2002). Theor Chem Acc 108:255Google Scholar
  49. 49.
    Shaik SS (1981). J Am Chem Soc 103:3692CrossRefGoogle Scholar
  50. 50.
    Pross A, Shaik SS (1983). Acc Chem Res 16:363CrossRefGoogle Scholar
  51. 51.
    Shaik SS (1989). In: Bertran J, Csizmadia GI (eds). In: New theoretical concepts for understanding organic reactions NATO ASISeries, Vol C267. Kluwer, Dordrecht, HollandGoogle Scholar
  52. 52.
    Shaik SS, Hiberty PC (1991). In: Maksic ZB (ed). Theoretical concepts for chemical bonding, Vol 4. Springer, Berlin Heidelberg New York, p 324Google Scholar
  53. 53.
    Shaik S, Hiberty PC (1995). Adv quantum chem 26:99Google Scholar
  54. 54.
    Shaik S, Shurki A (1999). Angew Chem Int Ed Engl 38:587CrossRefGoogle Scholar
  55. 55.
    Hiberty PC, Danovich D, Shurki A, Shaik S (1995). J Am Chem Soc 117:7760CrossRefGoogle Scholar
  56. 56.
    Shaik S, Shurki A, Danovich D, Hiberty PC (2001). Chem Rev 101:1501CrossRefPubMedGoogle Scholar
  57. 57.
    Kollmar H (1979). J Am Chem Soc 101:4832CrossRefGoogle Scholar
  58. 58.
    Hess BJ, Schaad L (1983). J Am Chem Soc 105:7500CrossRefGoogle Scholar
  59. 59.
    Shaik SS, Hiberty PC, Lefour JM, Ohanessian G (1987). J Am Chem Soc 109:363CrossRefGoogle Scholar
  60. 60.
    Glendening ED, Faust R, Streitwieser A, Vollhardt KPC, Weinhold F (1993). J Am Chem Soc 115:10952CrossRefGoogle Scholar
  61. 61.
    Behrens S, Koester AM, Jug K (1994). J Org Chem 59:2546CrossRefGoogle Scholar
  62. 62.
    Mo Y, Wu W, Zhang Q (1994). J Phys Chem 98:10048CrossRefGoogle Scholar
  63. 63.
    Minkin VI, Glukhovtsev MN, Simkin BY (1994). Aromaticity and antiaromaticity. Wiley, New YorkGoogle Scholar
  64. 64.
    Streitwieser AJ (1961). Molecular orbital theory for organic chemists. Wiley, New YorkGoogle Scholar
  65. 65.
    Badgor GM (1969). Aromatic character and aromaticity. Cambridge University Press, Cambridge, LondonGoogle Scholar
  66. 66.
    Garratt JP (1986). Aromaticity. Wiley, New YorkGoogle Scholar
  67. 67.
    Deniz AA, Peters KS, Snyder GJ (1999). Science 286:1119CrossRefPubMedGoogle Scholar
  68. 68.
    George P, Trachtman M, Bock CW, Brett AM (1976). Tetrahedron 32:1357CrossRefGoogle Scholar
  69. 69.
    Haas Y, Zilberg S (1995). J Am Chem Soc 117:5387CrossRefGoogle Scholar
  70. 70.
    Shaik S, Zilberg S, Haas Y (1996). Acc Chem Res 29:211CrossRefGoogle Scholar
  71. 71.
    Shaik S, Shurki A, Danovich D, Hiberty PC (1996). J Am Chem Soc 18:666CrossRefGoogle Scholar
  72. 72.
    Shurki A, Shaik S (1997). Angew Chem Int Ed Engl 36:2205CrossRefGoogle Scholar
  73. 73.
    Warshel A, Bromberg A (1970). J Chem Phys 52:1262CrossRefGoogle Scholar
  74. 74.
    Raff LM, Stivers L, Proter RN, Thompson DL, Sims LB (1970). J Chem Phys 52:3449CrossRefGoogle Scholar
  75. 75.
    Warshel A, Levitt M (1976). J Mol Biol 103:227PubMedGoogle Scholar
  76. 76.
    Warshel A, Weiss RM (1980). J Am Chem Soc 102:6218CrossRefGoogle Scholar
  77. 77.
    Warshel A (1991). Computer modeling of chemical reactions in enzymes and solutions. Wiley, New YorkGoogle Scholar
  78. 78.
    Åqvist J, Warshel A (1993). Chem Rev 93:2523CrossRefGoogle Scholar
  79. 79.
    Warshel A (2003). Annu Rev Bioph Biom 32:425CrossRefGoogle Scholar
  80. 80.
    Zwanzig RW (1954). J Chem Phys 22:1420CrossRefGoogle Scholar
  81. 81.
    Valleau JP, Torrie GM (1977). Modern theoretical chemistry. Plenum Press, New YorkGoogle Scholar
  82. 82.
    Hwang J-K, Warshel A (1987). J Am Chem Soc 109:715CrossRefGoogle Scholar
  83. 83.
    Hwang J-K, King G, Creighton S, Warshel A (1988). J Am Chem Soc 110:5297CrossRefGoogle Scholar
  84. 84.
    King G, Warshel A (1990). J Chem Phys 93:8682CrossRefGoogle Scholar
  85. 85.
    Muller RP, Warshel A (1995). J Phys Chem 99:17516CrossRefGoogle Scholar
  86. 86.
    Villa J, Warshel A (2001). J Phys Chem B 105:7887CrossRefGoogle Scholar
  87. 87.
    Warshel A, Parson WW (2001). Q Rev Biophys 34:563PubMedGoogle Scholar
  88. 88.
    Shurki A, Warshel A (2003). Adv Prot Chem 66:249CrossRefGoogle Scholar
  89. 89.
    Warshel A (2002). Acc Chem Res 35:385CrossRefPubMedGoogle Scholar
  90. 90.
    Warshel A, Russell ST (1984). Q Rev Biophys 17:283PubMedCrossRefGoogle Scholar
  91. 91.
    Åqvist J, Fothergill M (1996). J Biol Chem 271:10010CrossRefPubMedGoogle Scholar
  92. 92.
    Luzhkov V, Åqvist J (1998). J Am Chem Soc 120:6131CrossRefGoogle Scholar
  93. 93.
    Schmitt UW, Voth GA (1998). J Phys Chem B 102:5547CrossRefGoogle Scholar
  94. 94.
    Schmitt UW, Voth GA (1999). J Chem Phys 111:9361CrossRefGoogle Scholar
  95. 95.
    Vuilleumier R, Borgis D (1997). J Mol Struct 436–437:555CrossRefGoogle Scholar
  96. 96.
    Vuilleumier R, Borgis D (1998). Chem Phys Let 284:71CrossRefGoogle Scholar
  97. 97.
    Billeter SR, Webb SP, Agarwal PK, Iordanov T, Hammes-Schiffer S (2001). J Am Chem Soc 123:11262CrossRefPubMedGoogle Scholar
  98. 98.
    Hammes-Schiffer S, Billeter SR (2001). Int Rev Phys Chem 20:591CrossRefGoogle Scholar
  99. 99.
    Neria E, Karplus M (1997). Chem Phys Lett 267:23CrossRefGoogle Scholar
  100. 100.
    Bruice TC (2002). Acc Chem Res 35:139CrossRefPubMedGoogle Scholar
  101. 101.
    Bruice TC, Lightstone FC (1999). Acc Chem Res 32:127CrossRefGoogle Scholar
  102. 102.
    Hur S, Bruice TC (2003). Proc Nat Acad Sci 100:12015CrossRefPubMedGoogle Scholar
  103. 103.
    Shurki A, Štrajbl M, Villa J, Warshel A (2002). J Am Chem Soc 124:4097CrossRefPubMedGoogle Scholar
  104. 104.
    Marcus RA (1964). Ann Rev Phys Chem 15:155CrossRefGoogle Scholar
  105. 105.
    Štrajbl M, Shurki A, Kato M, Warshel A (2003). J Am Chem Soc 125:10228CrossRefPubMedGoogle Scholar
  106. 106.
    Langen R, Schweins T, Warshel A (1992). Biochemistry 31:8691CrossRefPubMedGoogle Scholar
  107. 107.
    Schweins T, Geyer M, Kalbitzer HR, Wittinghofer A, Warshel A (1996). Biochemistry 35:14225CrossRefPubMedGoogle Scholar
  108. 108.
    Schweins T, Warshel A (1996). Biochemistry 35:14232CrossRefPubMedGoogle Scholar
  109. 109.
    Shurki A, Warshel A (2004). Proteins 55:1CrossRefPubMedGoogle Scholar
  110. 110.
    Glennon TM, Villa J, Warshel A (2000). Biochemistry 39:9641CrossRefPubMedGoogle Scholar
  111. 111.
    Chang Y-T, Miller WH (1990). J Phys Chem 94:5884CrossRefGoogle Scholar
  112. 112.
    Chang Y-T, Minichino C, Miller WH (1992). J Chem Phys 96:4341CrossRefGoogle Scholar
  113. 113.
    Grochowski P, Lesyng B, Bala P, McCammon JA (1996). Int J Quant Chem 60:1143CrossRefGoogle Scholar
  114. 114.
    Ischtwan J, Collins MA (1994). J Chem Phys 100:8080CrossRefGoogle Scholar
  115. 115.
    Kim Y, Corchado JC, Villá J, Xing J, Truhlar DG (2000). J Chem Phys 112:2718CrossRefGoogle Scholar
  116. 116.
    Albu TV, Corchado JC, Truhlar DG (2001). J Phys Chem A 105:8465CrossRefGoogle Scholar
  117. 117.
    Bernardi F, Olivucci M, Robb MA (1992). J Am Chem Soc 114:1606CrossRefGoogle Scholar
  118. 118.
    Garavelli M, Ruggeri F, Ogliaro F, Bearpark MJ, Bernardi F, Olivucci M, Robb MA (2003). J Comp Chem 24:1357CrossRefGoogle Scholar
  119. 119.
    Mo YR, Gao JL (2000). J Phys Chem A 104:3012CrossRefGoogle Scholar
  120. 120.
    Mo YR, Gao JL (2000). J Comput Chem 21:1458CrossRefGoogle Scholar
  121. 121.
    Wu W, Zhong SJ, Shaik S (1998). Chemical Physics Letters 292:7CrossRefGoogle Scholar
  122. 122.
    Wu W, Shaik S (1999). Chemical Physics Letters 301:37CrossRefGoogle Scholar
  123. 123.
    Wu W, Danovich D, Shurki A, Shaik S (2000). J Phys Chem A 104:8744CrossRefGoogle Scholar
  124. 124.
    Wu W, Luo Y, Song LC, Shaik S (2001). Phys Chem Chem Phys 3:5459CrossRefGoogle Scholar
  125. 125.
    Tomasi J, Persico M (1994). Chem Rev 94:2027CrossRefGoogle Scholar
  126. 126.
    Song LC, Wu W, Zhang QN, Shaik S (2004). J Phys Chem A 108:6017CrossRefGoogle Scholar
  127. 127.
    Štrajbl M, Shurki A, Warshel A (2004). Proc Nat Acad Sci 100:14834CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Lise Meitner-Minerva Center for Computational Quantum ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations