Theoretical Chemistry Accounts

, Volume 115, Issue 2–3, pp 100–112 | Cite as

The Arrangement of First- and Second-shell Water Molecules Around Metal Ions: Effects of Charge and Size

  • Charles W. Bock
  • George D. Markham
  • Amy K. Katz
  • Jenny P. Glusker
Regular Article


Structural features of clusters involving a metal ion (Li+, Na+, Be2+, Mg2+, Zn2+, Al3+, or Ti4+) surrounded by a total of 18 water molecules arranged in two or more shells have been studied using density functional theory. Effects of the size and charge of each metal ion on the organization of the surrounding water molecules are compared to those found for a Mg[H2O]62+• [H2O]12 cluster that has the lowest known energy on the Mg2+• [H2O]18 potential energy surface (Markham et al. in J Phys Chem B 106:5118–5134, 2002). The corresponding clusters with Zn2+ or Al3+ have similar structures. In contrast to this, clusters with a monovalent Li+ or Na+ ion, or with a very small Be2+ ion, differ in their hydrogen-bonding patterns and the coordination number can decrease to four. The tetravalent Ti4+ ionizes one inner-shell water molecule to a hydroxyl group leaving a Ti4+(H2O)5 (OH) core, and an H3O+• • • H2O moiety dissociates from the second shell of water molecules. These observations highlight the influence of cation size and charge on the local structure of hydrated ions, the high-charge cations causing chemical changes and the low-charge cations being less efficient in maintaining the local order of water molecules.


Metal ion Cation hydration Density functional theory Second hydration shell Water structure Hydrogen bonding network 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

214_2005_56_MOESM1_ESM.pdf (221 kb)
Supplementary material


  1. 1.
    Frausto da Silva JJR, Williams RJP (1991) The biological chemistry of the elements. the inorganic chemistry of life. Clarendon Press, Oxford, EnglandGoogle Scholar
  2. 2.
    Sigel H, Martin RB (1994). Chem Soc Rev 23:83–91CrossRefGoogle Scholar
  3. 3.
    Glusker JP (1991). Adv Protein Chem 42:1–76PubMedCrossRefGoogle Scholar
  4. 4.
    Egorov AV, Komolkin AV, Chizhik VI, Yushmanov PV, Lyubartsev AP, Laaksonen A (2003). J Phys Chem B107:3234–3242CrossRefGoogle Scholar
  5. 5.
    Chillemi G, Barone V, D‘Angelo P, Mancini G, Persson I, Sanna N (2005). J Phys Chem B109:9186–9193CrossRefGoogle Scholar
  6. 6.
    Schwenk CF, Rode BM (2004). Chem Phys Phys Chem 5:342–348Google Scholar
  7. 7.
    Erras-Hanauer H, Clark T, van Eldik R (2003). Coordination Chem Rev 238–239:233–253CrossRefGoogle Scholar
  8. 8.
    Tongraar A, Rode BM (2004). Chem Phys Lett 385:378–383CrossRefGoogle Scholar
  9. 9.
    Markham GD, Bock CW, Glusker JP (2002). J Phys Chem B 106:5118–5134CrossRefGoogle Scholar
  10. 10.
    Bock CW, Markham GD, Katz AK, Glusker JP (2003). Inorg Chem 42:1538–1548CrossRefPubMedGoogle Scholar
  11. 11.
    Uudsemaa M, Tamm T (2001). Chem Phys Lett 342:667–672CrossRefGoogle Scholar
  12. 12.
    Díaz N, Suárez D, Merz KM Jr (2000). Chem Phys Lett 326:288–292CrossRefGoogle Scholar
  13. 13.
    Pavlov M, Siegbahn PEM, Sandstrom M (1998). J Phys Chem A102:219–228Google Scholar
  14. 14.
    Pye CC, Rudolph WW (1998). J Phys Chem A102:9933–9943Google Scholar
  15. 15.
    Caminiti R, Licheri G, Paschina G, Piccaluga G, Pinna G (1980). Z Naturforsch A35:1361–1367Google Scholar
  16. 16.
    Neilson GW, Enderby JE (1983). Proc R Soc Lond A390:353–371Google Scholar
  17. 17.
    Waizumi K, Tamura Y, Masuda H, Oktaki H (1991). Z Naturforsch A46:307–312Google Scholar
  18. 18.
    Pálinkás G, Radnai T, Dietz W, Szrász GI, Heinzinger K (1982). Z Naturforsch A37:1049–1060Google Scholar
  19. 19.
    Jörgensen CK (1957). Acta Chem Scand 11:399–400Google Scholar
  20. 20.
    Matwiyoff NA, Taube H (1968). J Am Chem Soc 90:2796–2800CrossRefGoogle Scholar
  21. 21.
    Malinowski ER, Vorgin FJ, Knapp PS, Flint WL, Anton A, Highberger G (1971). J Chem Phys 54:178–181CrossRefGoogle Scholar
  22. 22.
    Frey CM, Stuehr J (1974). In: Sigel H (ed) Metal ions in biological systems, vol 1. Marcel Dekker, New York, p 69Google Scholar
  23. 23.
    Johnson CK (1965). Acta Crystallogr 18:1004–1018CrossRefPubMedGoogle Scholar
  24. 24.
    Pearson RG (1966). Science 151:172–177CrossRefGoogle Scholar
  25. 25.
    Bock CW, Kaufman A, Glusker JP (1994). Inorg Chem 33:419–427CrossRefGoogle Scholar
  26. 26.
    Vanhouteghem V, Lenstra ATH, Schweiss P (1987). Acta Crystallogr B43:523–528Google Scholar
  27. 27.
    Pavlov M, Siegbahn PEM, Sandstrom M (1998). J Phys Chem 102A:219–228Google Scholar
  28. 28.
    Becke AD (1988). Phys Rev A38:3098–3100Google Scholar
  29. 29.
    Perdew JP (1986). Phys Rev B33:8822–8824Google Scholar
  30. 30.
    Martinez JM, Pappalardo RR, Marcos ES (1999). J Am Chem Soc 121:3175–3184CrossRefGoogle Scholar
  31. 31.
    Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein M L (1993). J Chem Phys 79:926–935CrossRefGoogle Scholar
  32. 32.
    Brown ID (1988). Acta Crystallogr B44:545–553Google Scholar
  33. 33.
    Allen FH, Bellard S, Brice MD, Cartwright BA, Doubleday A, Higgs H, Hummelink T, Hummelink-Peters BG, Kennard O, Motherwell WDS, Rodgers JR, Watson DG (1979). Acta Crystallogr B35:2331–2339Google Scholar
  34. 34.
    Becke AD (1993). J Chem Phys 98:1372–1377CrossRefGoogle Scholar
  35. 35.
    Lee C, Yang W, Parr RG (1988). Phys Rev B37:785–789Google Scholar
  36. 36.
    Ditchfield R, Hehre WJ, Pople JA (1971). J Chem Phys 54:724–728CrossRefGoogle Scholar
  37. 37.
    McLean AD, Chandler GS (1980). J Chem Phys 72:5639–5648CrossRefGoogle Scholar
  38. 38.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998). Gaussian 98 (Revision A1), Pittsburgh PA, USAGoogle Scholar
  39. 39.
    Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004). Gaussian 03 Revision C02. Gaussian Inc Wallingford CT 2004Google Scholar
  40. 40.
    Jaguar 4.1 (2000). Schrodinger Inc., Portland OR. It should be noted that since no symmetry was actually empoyed in the 18-water cluster optimizations, the symmetry group we are reporting in the text is only approximate and depends on the tolerance used by Jaguar in evaluating the symmetry. For example, our Mg.[H2O]62+•[H2O]12 cluster has S 6 symmetry for tolerances above about 0.008 Å (the default in Jaguar 4.1 is 0.04 Å), C i symmetry for tolerances between 0.008 and 0.0006 Å, and C 1 below thisGoogle Scholar
  41. 41.
    Reed AE, Curtiss LA, Weinhold F (1988). Chem Rev 88:899–926CrossRefGoogle Scholar
  42. 42.
    Reed AE, Weinstock RB, Weinhold F (1985). J Chem Phys 83:735–746CrossRefGoogle Scholar
  43. 43.
    Glendening ED, Reed AE, Carpenter JE; Weinhold, F (1995). NBO Version 3.1 from Gaussian 94Google Scholar
  44. 44.
    Erlebacher J, Carrell HL (1992). ICRVIEW – Graphics program for use on Silicon Graphics computers. The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USAGoogle Scholar
  45. 45.
    Carrell HL (1976). BANG – Molecular geometry program. The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USAGoogle Scholar
  46. 46.
    Chaplin M, Scholar
  47. 47.
    Powell HM, Riesz P (1948). Nature (London) 161:52–53CrossRefGoogle Scholar
  48. 48.
    Jeffrey GA (1969). Acc Chem Res 2:344–352CrossRefGoogle Scholar
  49. 49.
    Tsoucaris G (1987). In: Desiraju GR (ed) Organic solid state chemistry Elsevier, Amsterdam, pp 207–270Google Scholar
  50. 50.
    Faraday M (1823). Quant J Sci Let Arts 15:71–74Google Scholar
  51. 51.
    Pauling L, Marsh RE (1952). Proc Natl Acad Sci USA 38:112–118CrossRefGoogle Scholar
  52. 52.
    McDonald S, Ojamäe L, Singer SJ (1998). J Phys Chem A102:2824–2832Google Scholar
  53. 53.
    Bol W, Welzen T (1977). Chem Phys Lett 49:189–192CrossRefGoogle Scholar
  54. 54.
    Caminiti R, Licheri G, Piccaluga G, Pinna G, Radnai T (1979). J Chem Phys 71:2473–2476CrossRefGoogle Scholar
  55. 55.
    Caminiti R, Radnai T (1980). Z Natruforsch A35:1368–1372Google Scholar
  56. 56.
    Reinhard B, Niedner-Schatteberg G (2002). J Phys Chem A106:7988–7892Google Scholar
  57. 57.
    Siu C-K, Liu Z-F, Tse JS (2002). J Am Chem Soc 124:10846–10860CrossRefPubMedGoogle Scholar
  58. 58.
    Beyer M, Achatz U, Berg C, Joos S, Niedner-Schatteberg G, Bondybev VE (1999). J Phys Chem A103:671–678CrossRefGoogle Scholar
  59. 59.
    Martinez JM, Pappalardo RR, Marcos ES (1999). J Am Chem Soc 121:3175–3184CrossRefGoogle Scholar
  60. 60.
    Rudolph WW, Mason R, Pye CC (2000). Phys Chem Chem Phys 2:5030–5040CrossRefGoogle Scholar
  61. 61.
    Lipscomb WN, Sträter N (1996). Chem Rev 96:2375–2433CrossRefPubMedGoogle Scholar
  62. 62.
    Bock CW, Katz AK, Glusker JP (1995). J Amer Chem Soc 117:3754–3763CrossRefGoogle Scholar
  63. 63.
    Marcus Y (1998). Chem Rev 88:1475–1498CrossRefGoogle Scholar
  64. 64.
    Ohtaki H, Yamaguchi T, Maeda M (1976). Bull Chem Soc Japan 49:701–708CrossRefGoogle Scholar
  65. 65.
    Powell DH, Gullidge PMN, Neilson GW (1990). Mol Phys 71:1107–1116CrossRefGoogle Scholar
  66. 66.
    Radnai T, Inoue K, Ohtaki H (1990). Bull Chem Soc Jpn 63:3420–3425CrossRefGoogle Scholar
  67. 67.
    Mhin BJ, Lee S, Cho SJ, Lee K, Kim KS (1992). Chem Phys Lett 197:77–80CrossRefGoogle Scholar
  68. 68.
    Lee S, Kim J, Park JK, Kim KS (1996). J Phys Chem 100:14329–14338CrossRefGoogle Scholar
  69. 69.
    Chillemi G, D’Angelo P, Pavel NV, Sanna N, Barone V (2002). J Am Chem Soc 124:1968–1976CrossRefPubMedGoogle Scholar
  70. 70.
    D’Angelo P, Barone V, Chillemi G, Sanna N, Meyer-Klaucke W, Pavel NV (2002). J Am Chem Soc 124:1958–1967CrossRefPubMedGoogle Scholar
  71. 71.
    Rudolph WW, Pye CC (1999). Phys Chem Chem Phys 1:4583– 4593CrossRefGoogle Scholar
  72. 72.
    Bock CW, Glusker JP (1993). Inorg Chem 32:1242–1250CrossRefGoogle Scholar
  73. 73.
    Lee MA, Winter NW, Casey WH (1994). J Phys Chem 98:8641–8647CrossRefGoogle Scholar
  74. 74.
    Markham GD, Glusker JP, Bock CL, Trachtman M, Bock CW (1996). J Phys Chem 100:3488–3497CrossRefGoogle Scholar
  75. 75.
    Marx U, Sprik M, Parrinello M (1997). Chem Phys Lett 273:360–366CrossRefGoogle Scholar
  76. 76.
    Yamaguchi T, Ohtaki H, Spohr E, Pálinkás G, Heinzinger K, Probst MM (1986). Z Naturforsch A41:1175–1185Google Scholar
  77. 77.
    Dietz W, Riede W O, Heinzinger K (1982). Z Naturforsch 37A:1038–1048Google Scholar
  78. 78.
    Friedman HL (1985). Chem Scr 25:42–48Google Scholar
  79. 79.
    Ohtaki H, Radnai T (1993). Chem Rev 93:1157–1204CrossRefGoogle Scholar
  80. 80.
    Howell I, Neilson GW (1996). J Phys: Condens Matter 8:4455–4463CrossRefGoogle Scholar
  81. 81.
    Radnai T, Pálinkás G, Szász GI, Heinzinger K (1981). Z Naturforsch A36:1076–1082Google Scholar
  82. 82.
    Rudolph W, Brooker MH, Pye CC (1995). J Phys Chem 88:3793–3797CrossRefGoogle Scholar
  83. 83.
    Chizhik VI (1997). Mol Phys 90:653–660CrossRefGoogle Scholar
  84. 84.
    Glendening ED, Feller D (1995). J Phys Chem 99:3060–3067CrossRefGoogle Scholar
  85. 85.
    Hashimoto K, Kamimoto T (1998). J Am Chem Soc 120:3560–3570CrossRefGoogle Scholar
  86. 86.
    Kim J, Lee S, Cho SJ, Mhin BJ, Kim KS (1995). J Chem Phys 102:839–849CrossRefGoogle Scholar
  87. 87.
    Arbman M, Siegbahn H, Pettersson L, Siegbahn P (1985). Mol Phys 54:1149–1160CrossRefGoogle Scholar
  88. 88.
    Probst MM (1987). Chem Phys Lett 137:229–233CrossRefGoogle Scholar
  89. 89.
    Lybrand TP, Kollman PA (1985). J Chem Phys 83:2923–2933CrossRefGoogle Scholar
  90. 90.
    Khalack JM, Lyubartsev AP (2004). Condens Matter Phys 7:683–698Google Scholar
  91. 91.
    Pálinkas G, Radnai T, Hajdu H (1980). Z Naturforsch A35:107–114Google Scholar
  92. 92.
    Ohtomo N, Arakawa K (1980). Bull Chem Soc Jpn 53:1789–1794CrossRefGoogle Scholar
  93. 93.
    Maeda M, Ohtaki H (1975). Bull Chem Soc Jpn 48:3755–3756CrossRefGoogle Scholar
  94. 94.
    Caminiti R, Licheri G, Paschina G, Piccaluga G, Pinna G (1980). J Chem Phys 72:4522–4528CrossRefGoogle Scholar
  95. 95.
    Caminiti R, Licheri G, Piccaluga G, Pinna G (1977). Rend Semin Fac Sci Univ Cagliari XLVI, supp. 19Google Scholar
  96. 96.
    Clementi E, Barsotti R (1978). Chem Phys Lett 59:21–25CrossRefGoogle Scholar
  97. 97.
    Puckar L, Tomlins K, Duncombe B, Cox H, Stace AJ (2005). J Am Chem Soc 127:7559–7569CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Charles W. Bock
    • 1
    • 2
  • George D. Markham
    • 2
  • Amy K. Katz
    • 2
    • 3
  • Jenny P. Glusker
    • 2
  1. 1.Philadelphia UniversityPhiladelphiaUSA
  2. 2.The Institute for Cancer ResearchFox Chase Cancer CenterPhiladelphiaUSA
  3. 3.The University of Tennessee School of Genome Science and TechnologyKnoxvilleUSA

Personalised recommendations