Theoretical Chemistry Accounts

, Volume 115, Issue 2–3, pp 145–160 | Cite as

Actinide Chemistry in Solution, Quantum Chemical Methods and Models

  • Valerie Vallet
  • Peter Macak
  • Ulf Wahlgren
  • Ingmar Grenthe
Regular Article

Abstract

Theoretical modeling of actinide complexes requires access to structural parameters, information on electronic, vibration and rotation energy levels and thermodynamics properties. This article presents a critical review of theoretical studies of actinide chemistry in gas-phase and in solution and a comparison with experimental data in order to assess the applicability and accuracy by which various electronic structure theories can predict the required quantities. The quality of the basis set, the importance of electron correlation, the description of solute-solvent interactions is discussed in some detail.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Douglas M, Kroll NM (1974). Ann Phys (NY) 82:89–155CrossRefGoogle Scholar
  2. 2.
    Hess BA (1986). Phys Rev A 33:3742–3748CrossRefPubMedGoogle Scholar
  3. 3.
    Malmqvist PÅ, Roos BO, Schimmelpfennig B (2002). Chem Phys Lett 357:230–240CrossRefGoogle Scholar
  4. 4.
    Karlström G, Lindh R, Malmqvist P-Å, Roos BO, Ryde U, Veryazov V, Widmark P-O, Cossi M, Schimmelpfennig B, Neogrady P, Seijo L (2003). Comput Mater Sci 28:222–239CrossRefGoogle Scholar
  5. 5.
    Vallet V, Maron L, Teichteil C, Flament J-P (2000). J Chem Phys 113:1391–1402CrossRefGoogle Scholar
  6. 6.
    Heß B A, Marian CM, Wahlgren U, Gropen O (1996). Chem Phys Lett 251:365–371CrossRefGoogle Scholar
  7. 7.
    Schimmelpfennig B (1996). AMFI, an atomic mean-field integral program. Stockholm University, StockholmGoogle Scholar
  8. 8.
    Pyykkö P (1987). Inorg Chim Acta 139:243–245CrossRefGoogle Scholar
  9. 9.
    Küchle W, Dolg M, Stoll H (1994). J Chem Phys 100:7535–7542CrossRefGoogle Scholar
  10. 10.
    Küchle W (1993) DiplomarbeitGoogle Scholar
  11. 11.
    Ismail N, Heully J-L, Saue T, Daudey J-P, Marsden C (1999). Chem Phys Lett 300:296–302CrossRefGoogle Scholar
  12. 12.
    Vallet V, Schimmelpfennig B, Maron L, Teichteil C, Leininger T, Gropen O, Grenthe I, Wahlgren U (1999). Chem Phys 244:185–193CrossRefGoogle Scholar
  13. 13.
    García-Hernández M, Lauterbach C, Krüger S, Matveev A, Rösch N (2002). J Comput Chem 23:834–846CrossRefPubMedGoogle Scholar
  14. 14.
    Batista ER, Martin RL, Hay PJ, Peralta JE, Scuseria GE (2004). J Chem Phys 121:2144–2150CrossRefPubMedGoogle Scholar
  15. 15.
    Straka M, Kaupp M (2005). Chem Phys 311:45–56CrossRefGoogle Scholar
  16. 16.
    Hay PJ, Wadt WR, Kahn LH (1979). J Chem Phys 71:1767–1779CrossRefGoogle Scholar
  17. 17.
    Hay PJ, Wadt WR (1985). J Chem Phys 82:270–283CrossRefGoogle Scholar
  18. 18.
    Hay PJ (1983). J Chem Phys 79:5469–5482CrossRefGoogle Scholar
  19. 19.
    Hay PJ, Martin RL (1998). J Chem Phys 109:3875–3881CrossRefGoogle Scholar
  20. 20.
    Tsushima S, Uchida Y, Reich T (2002). Chem Phys Lett 357:73–77CrossRefGoogle Scholar
  21. 21.
    Purvis III GD, Bartlett RJ (1982). J Chem Phys 76:1910–1918CrossRefGoogle Scholar
  22. 22.
    Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989). Chem Phys Lett 157:479–483CrossRefGoogle Scholar
  23. 23.
    Watts JD, Gauss J, Bartlett RJ (1993). J Chem Phys 98:8718–8733CrossRefGoogle Scholar
  24. 24.
    Langhoff SR, Davidson ER (1974). Int J Quantum Chem 8:61–72CrossRefGoogle Scholar
  25. 25.
    Gdanitz RJ, Ahlrichs R (1988). Chem Phys Lett 143:413–420CrossRefGoogle Scholar
  26. 26.
    Andersson K, Malmqvist P-Å, Roos BO, Sadlej AJ, Wolinski K (1990). J Phys Chem 94:5483–5488CrossRefGoogle Scholar
  27. 27.
    Andersson K, Malmqvist P-Å, Roos BO (1992). J Chem Phys 96:1218–1226CrossRefGoogle Scholar
  28. 28.
    Weigend F, Häser M Theor Chim Acc (1997). 97:331–340Google Scholar
  29. 29.
    Weigend F, Häser M, Patzelt H, Ahlrichs R (1998). Chem Phys Lett 294:143–152CrossRefGoogle Scholar
  30. 30.
    Becke, AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  31. 31.
    Tomasi J, Persico M (1994). Chem Rev 94:2027–2094CrossRefGoogle Scholar
  32. 32.
    Cramer CJ, Truhlar DG (1999). Chem Rev 99:2161–2200CrossRefPubMedGoogle Scholar
  33. 33.
    Warshel A, Levitt MJ (1976). Mol Biol 103:227–249PubMedCrossRefGoogle Scholar
  34. 34.
    Singh UC, Kollman PA (1986). J Comput Chem 7:718–730CrossRefGoogle Scholar
  35. 35.
    Bash PA, Field MJ, Karplus M (1987). J Am Chem Soc 109:8092–8094CrossRefGoogle Scholar
  36. 36.
    Woo TK, Cavallo LC, Ziegler T (1998). Theor Chim Acc 100:307–313 and references thereinGoogle Scholar
  37. 37.
    Infante I, Visscher L (2004). J Comput Chem 25:386–392CrossRefPubMedGoogle Scholar
  38. 38.
    Yang T, Tsushima S, Suzuki A (2001). J Phys Chem A 105:10439–10445CrossRefGoogle Scholar
  39. 39.
    Yang T, Tsushima S, Suzuki A (2002). Chem Phys Lett 360:534–542CrossRefGoogle Scholar
  40. 40.
    Elrod MJ, Saykally RJ (1994). Chem Rev 94:1975–1997PubMedCrossRefGoogle Scholar
  41. 41.
    Car R, Parrinello M (1985). Phys Rev Lett 55:2471–2474PubMedCrossRefGoogle Scholar
  42. 42.
    . Warshel A, Karplus M (1972). J Am Chem Soc 94:5612–5625CrossRefGoogle Scholar
  43. 43.
    Vallet V, Wahlgren U, Schimmelpfennig B, Moll H, Szabó Z, Grenthe I (2001). Inorg Chem 40:3516–3525CrossRefPubMedGoogle Scholar
  44. 44.
    Cossi M, Barone V (2000). J Chem Phys 112:2427–2435CrossRefGoogle Scholar
  45. 45.
    Macak P, Fromager E, Privalov T, Schimmelpfennig B, Grenthe I, Wahlgren U (2005). J Phys Chem A 109:4950–4956CrossRefGoogle Scholar
  46. 46.
    Fuoss RM (1958). J Am Chem Soc 80:5059–5061CrossRefGoogle Scholar
  47. 47.
    Margerum DW, Cayley GR, Pagenkopf GK (1978) In: Martell AE (ed.) Coordination chemistry, vol. 2. ACS Monograph 174, Washington DC, pp 1–220Google Scholar
  48. 48.
    Vallet V, Wahlgren U, Grenthe I (2003). J Am Chem Soc 125: 14941–14950CrossRefPubMedGoogle Scholar
  49. 49.
    Craw JS, Vincent MA, Hillier IH, Wallwork AL (1995). J Phys Chem 99:10181–10185CrossRefGoogle Scholar
  50. 50.
    Privalov T, Schimmelpfennig B, Wahlgren U, Grenthe I (2003). J Phys Chem A 107:587–592CrossRefGoogle Scholar
  51. 51.
    Schimmelpfennig B, Privalov T, Wahlgren U, Grenthe I (2003). J Phys Chem A 107:9705–9711CrossRefGoogle Scholar
  52. 52.
    Zhou M, Andrews L, Ismail N, Marsden C (2000). J Phys Chem A 104:5495–5502CrossRefGoogle Scholar
  53. 53.
    Weinstock B, Goodman GL (1965). Adv Chem Phys 9:169CrossRefGoogle Scholar
  54. 54.
    Han Y-H, Hirao K (2000). J Chem Phys 113:7345–7350CrossRefGoogle Scholar
  55. 55.
    Bergner A, Dolg M, Küchle W, Stoll H, Preuss H, (1993). Mol Phys 80:1431–1441CrossRefGoogle Scholar
  56. 56.
    Schäfer A, Huber C, Ahlrichs R (1994). J Chem Phys 100:5829–5935CrossRefGoogle Scholar
  57. 57.
    Huzinaga S (1965). J Chem Phys 42:1293–1302CrossRefGoogle Scholar
  58. 58.
    Schäfer A, Horn H, Ahlrichs R (1992). J Chem Phys 97:2571–2577CrossRefGoogle Scholar
  59. 59.
    Wahlgren U, Moll H, Grenthe I, Schimmelpfennig B, Maron L, Vallet V, Gropen O (1999). J Phys Chem A 103:8257–8264CrossRefGoogle Scholar
  60. 60.
    Vallet V, Wahlgren U, Schimmelpfennig B, Szabó Z, Grenthe I (2001). J Am Chem Soc 123:11999–12000CrossRefPubMedGoogle Scholar
  61. 61.
    Gagliardi L, Grenthe I, Roos BO (2001). Inorg Chem 40:2976–2978CrossRefPubMedGoogle Scholar
  62. 62.
    Gagliardi L, Roos B. O. (2002). Inorg Chem 41:1315–1319CrossRefPubMedGoogle Scholar
  63. 63.
    Vallet V, Moll H, Wahlgren U, Szabó Z, Grenthe I (2003). Inorg Chem 42:1982–1993CrossRefPubMedGoogle Scholar
  64. 64.
    Docrat TI, Mosselmans JFW, Charnock JM, Whiteley MW, Collison D, Livens FR, Jones C, Edmiston MJ (1999). Inorg Chem 38:1879–1882CrossRefPubMedGoogle Scholar
  65. 65.
    Pyykkö P, Li J, Runeberg N (1994). J Phys Chem 98:4809–4813CrossRefGoogle Scholar
  66. 66.
    Clark DL, Conradson SD, Ekberg SA, Hess NJ, Neu MP, Palmer PD, Runde W, Tait CD (1996). J Am Chem Soc 118:2089–2090CrossRefGoogle Scholar
  67. 67.
    Hay PJ, Martin RL, Schreckenbach G (2000). J Phys Chem A 104:6259–6270CrossRefGoogle Scholar
  68. 68.
    Martínez JM, Pappalardo RR, Sánchez-Marcos E, Mennucci B, Tomasi J (2002). J Phys Chem B 106:1118–1123CrossRefGoogle Scholar
  69. 69.
    Martínez JM, Pappalardo RR, Sánchez-Marcos E (1997). J Phys Chem A 101:4444–4448CrossRefGoogle Scholar
  70. 70.
    Van Lenthe E, Snijders JG, Baerends EJ (1996). J Chem Phys 105:6505–6516CrossRefGoogle Scholar
  71. 71.
    Matsika S, Pitzer RM (2000). J Phys Chem A 104:4064–4068CrossRefGoogle Scholar
  72. 72.
    Clavaguéra-Sarrio C, Vallet V, Maynau D, Marsden CJ (2004). J Chem Phys 121:5312–5321CrossRefPubMedGoogle Scholar
  73. 73.
    Roos BO, Widmark P-O, Gagliardi L (2003). Faraday Discuss 124:57–62CrossRefPubMedGoogle Scholar
  74. 74.
    Vallet V, Maron L, Schimmelpfennig B, Leininger T, Teichteil C, Gropen O, Grenthe I, Wahlgren U (1999). J Phys Chem A 103:9285–9289CrossRefGoogle Scholar
  75. 75.
    Moskaleva LV, Krüger S, Spröl A, Rösch N (2004). Inorg Chem 43:4080–4090CrossRefPubMedGoogle Scholar
  76. 76.
    Tsushima S, Yang T, Suzuki A (2001). Chem Phys Lett 334:365–373CrossRefGoogle Scholar
  77. 77.
    Ismail N (2000). Thesis, Etude théorique de l’ion uranyle et de ses complexes et dérivés, Université Paul Sabatier de ToulouseGoogle Scholar
  78. 78.
    Hehre WJ, Ditchfield R, Pople JA (1972). J Chem Phys 56:2257–2261CrossRefGoogle Scholar
  79. 79.
    Bouteiller Y, Mijoule C, Nizam M, Barthelat JC, Daudey JP, Pelissier M (1988). Mol Phys 65:295–312CrossRefGoogle Scholar
  80. 80.
    Dunning TH, Hay PJ (1976). Modern theoretical chemistry. Plenum, New York pp. 1–28Google Scholar
  81. 81.
    Clavaguéra-Sarrio C, Brenner V, Hoyau S, Marsden CJ, Millié P, Dognon J-P (2003). J Phys Chem B 107:3051–3060CrossRefGoogle Scholar
  82. 82.
    Rotzinger FP (2005). Chem Rev 105:2003–2037PubMedCrossRefGoogle Scholar
  83. 83.
    Vallet V, Privalov T, Wahlgren U, Grenthe I (2004). J Am Chem Soc 126: 7766–7767CrossRefPubMedGoogle Scholar
  84. 84.
    Privalov T, Macak P, Schimmelpfennig B, Fromager E, Grenthe I, Wahlgren U (2004). J Am Chem Soc 126:9801–9808CrossRefPubMedGoogle Scholar
  85. 85.
    Fromager E, Vallet V, Schimmelpfennig B, Macak P, Privalov T, Grenthe I, Wahlgren U (2005). J Phys Chem 109:4957–4960Google Scholar
  86. 86.
    Matsika S, Pitzer RM (2001). J Phys Chem A 105:637–645CrossRefGoogle Scholar
  87. 87.
    Li X-Y, Fu K-X (2004). J Comp Chem 25:500–509CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Valerie Vallet
    • 1
  • Peter Macak
    • 2
  • Ulf Wahlgren
    • 3
  • Ingmar Grenthe
    • 4
  1. 1.Laboratoire PhLAM, UMR CNRS 8523, Centre d’Etudes et de Recherche Lasers et ApplicationsUniversité des Sciences et Technologies de LilleVilleneuve d’AscqFrance
  2. 2.AlbaNova University Center, Institute of BiotechnologyRoyal Institute of TechnologyStockholmSweden
  3. 3.AlbaNova University Center, Institute of PhysicsStockholm UniversityStockholmSweden
  4. 4.Department of Chemistry, Inorganic ChemistryRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations